forked from arlionn/sftt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.do
171 lines (152 loc) · 5.78 KB
/
main.do
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// ----- Load commands -----
adopath + "./code"
// ----- Section 4.1 -----
// Original 2TSF with simulated data
// First result
sjlog using ./output/output_simu_ori1, replace
clear
set seed 999
quietly set obs 1600
generate x1 = invnormal(uniform())
generate x2 = invnormal(uniform())
generate ue = invexponential(0.6, uniform())
generate we = invexponential(1.4, uniform())
generate v = invnormal(uniform())
generate y = x1 + 2 * x2 - ue + we + v
sftt y x1 x2, nocons
sjlog close, replace
// Second result
sjlog using ./output/output_simu_ori2, replace
sftt sigs
sftt eff
sum _u_hat_exp _w_hat_exp _wu_diff_exp
sum _wu_diff_exp, detail
sjlog close, replace
// ----- Section 4.2 -----
// 2TSF model with scaling property
// First result - no initial values
sjlog using ./output/output_simu_scal1, replace
clear
set seed 999
quietly set obs 10000
matrix C = (1, 0.1, 0.1 \ 0.1, 1, 0.1 \ 0.1, 0.1, 1)
drawnorm x zu zw, corr(C)
generate ui = invexponential(1, uniform())
generate wi = invexponential(1, uniform())
generate vi = invnormal(uniform())
generate y = x - exp(0.6 * zu) * ui + exp(0.8 * zw) * wi + vi
sftt y x, scal sigmau(zu) sigmaw(zw) robust nocons
sjlog close, replace
// Second result - with initial values
sjlog using ./output/output_simu_scal2, replace
sftt y x, scal sigmau(zu) sigmaw(zw) robust nocons ///
initial(delta_x 1 du_zu 0.6 mu_u 1 dw_zw 0.8 mu_w 1)
sjlog close, replace
// Third result - postestimation
sjlog using ./output/output_simu_scal3, replace
sftt sigs
sjlog close, replace
// ----- Section 4.3 -----
/*
I run [scaling_mc.do] to get the results in [./mc_results/],
and collect bias and MSE manually.
Since this script runs very slowly (because of the large scale of simulations),
I splited the loop into 12 different Stata processes to accerlate.
*/
// ----- Section 5.1 -----
sjlog using ./output/output_exmp1_1, replace
set seed 20220612
use kp09, clear
sftt lwage iq educ educ2 exper exper2 tenure tenure2 age married south ///
urban black sibs brthord meduc feduc
sftt sigs
sjlog close, replace
// Second result - efficiency
sjlog using ./output/output_exmp1_2, replace
sftt eff
tabstat _w_hat _u_hat _wu_diff, by(black) stat(mean p25 p50 p75) format(%6.3f) c(s)
tabstat _w_hat_exp _u_hat_exp _wu_diff_exp, by(black) stat(mean p25 p50 p75) ///
format(%6.3f) c(s)
sjlog close, replace
// ----- Section 5.2 -----
// First result - estimation
sjlog using ./output/output_exmp2_1, replace
set seed 20220612
use lu11, clear
sftt lnprice lnage symp urban education job endurance insur i.province i.year
sjlog close, replace
// Second result - efficiency
sjlog using ./output/output_exmp2_2, replace
sftt eff, exp
sum _u_hat_exp _w_hat_exp _wu_diff_exp
sum _wu_diff_exp, detail
sjlog close, replace
// Third result - histogram
sjlog using ./output/output_exmp2_3, replace
histogram _u_hat_exp, percent title(Percent, place(10) size(*0.7)) ///
ylabel(,angle(0)) ytitle("") xtitle("Surplus extracted by patients (%)") ///
xscale(titlegap(3) outergap(-2))
histogram _w_hat_exp, percent title(Percent, place(10) size(*0.7)) ///
ylabel(,angle(0)) ytitle("") xtitle("Surplus extracted by doctors (%)") ///
xscale(titlegap(3) outergap(-2))
histogram _wu_diff_exp, percent title(Percent, place(10) size(*0.7)) ///
ylabel(,angle(0)) ytitle("") xtitle("Net Surplus (%)") ///
xscale(titlegap(3) outergap(-2))
sjlog close, replace
// Generate the figures used in the paper
histogram _u_hat_exp, percent title(Percent, place(10) size(*0.7)) ///
ylabel(,angle(0)) ytitle("") xtitle("Surplus extracted by patients (%)") ///
xscale(titlegap(3) outergap(-2)) scheme(sj)
graph export output/patients.eps, replace
histogram _w_hat_exp, percent title(Percent, place(10) size(*0.7)) ///
ylabel(,angle(0)) ytitle("") xtitle("Surplus extracted by doctors (%)") ///
xscale(titlegap(3) outergap(-2)) scheme(sj)
graph export output/doctors.eps, replace
histogram _wu_diff_exp, percent title(Percent, place(10) size(*0.7)) ///
ylabel(,angle(0)) ytitle("") xtitle("Net Surplus (%)") ///
xscale(titlegap(3) outergap(-2)) scheme(sj)
graph export output/netsurplus.eps, replace
/*
DISTRIBUTION COMPARISON
The following code is prepared to generate the results of distribution comparison
Some format details need manually adjustments to generate the exact results presented in manuscript.
The original results used to prepare Table 2 & 3 are not sjlogged,
while the bundled results are esttabed to tex files.
*/
use lu11, clear
quietly {
// OLS
reg lnprice lnage symp urban education job endurance insur i.province i.year, r
est store res0
// 2TSF - exponential specification
sftt lnprice lnage symp urban education job endurance insur i.province i.year, seed(20220613)
est store res1
noisily sftt sigs
sftt eff
foreach var in u_hat w_hat wu_diff u_hat_exp w_hat_exp wu_diff_exp wu_net_effect {
rename _`var' _`var'_e
}
// 2TSF - half-normal specification
sftt lnprice lnage symp urban education job endurance insur i.province i.year, hnormal seed(20220613)
est store res2
noisily sftt sigs
sftt eff
}
esttab res0 res1 res2, drop(i_* *.year *.province)
esttab res0 res1 res2 using ./output/output_empirical_cmp_raw.tex, drop(i_* *.year *.province) ///
title(Estimation results with different distributions) replace
sum _u_hat_e _u_hat
sum _wu_net_effect _wu_net_effect_e
sum _wu_diff_exp_e _wu_diff_exp
sort _u_hat_e
gen rnk_u_e = _n
sort _u_hat
gen rnk_u_n = _n
sort _w_hat_e
gen rnk_w_e = _n
sort _w_hat
gen rnk_w_n = _n
scatter rnk_w_n rnk_w_e, xtitle("Exponential") ytitle("Half-Normal") scheme(sj)
graph export output/wi_rank.eps, replace
scatter rnk_u_n rnk_u_e, xtitle("Exponential") ytitle("Half-Normal") scheme(sj)
graph export output/ui_rank.eps, replace