Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bbox test #821

Merged
merged 7 commits into from
Aug 12, 2024
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 27 additions & 11 deletions omnigibson/sensors/vision_sensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -304,22 +304,19 @@ def _get_obs(self):
obs[modality], id_to_labels, obs["seg_semantic"], info["seg_semantic"], id=True
)
elif "bbox" in modality:
obs[modality] = self._remap_bounding_box_semantic_ids(obs[modality])
id_to_labels = raw_obs["info"]["idToLabels"]
obs[modality], info[modality] = self._remap_bounding_box_semantic_ids(obs[modality], id_to_labels)
return obs, info

def _remap_semantic_segmentation(self, img, id_to_labels):
def _preprocess_semantic_labels(self, id_to_labels):
"""
Remap the semantic segmentation image to the class IDs defined in semantic_class_name_to_id().
Also, correct the id_to_labels input with the labels from semantic_class_name_to_id() and return it.
Preprocess the semantic labels to feed into the remapper.

Args:
img (np.ndarray): Semantic segmentation image to remap
id_to_labels (dict): Dictionary of semantic IDs to class labels
Returns:
np.ndarray: Remapped semantic segmentation image
dict: Corrected id_to_labels dictionary
dict: Preprocessed dictionary of semantic IDs to class labels
"""
# Preprocess id_to_labels to feed into the remapper
replicator_mapping = {}
for key, val in id_to_labels.items():
key = int(key)
Expand All @@ -338,6 +335,21 @@ def _remap_semantic_segmentation(self, img, id_to_labels):
assert (
replicator_mapping[key] in semantic_class_id_to_name().values()
), f"Class {val['class']} does not exist in the semantic class name to id mapping!"
return replicator_mapping

def _remap_semantic_segmentation(self, img, id_to_labels):
"""
Remap the semantic segmentation image to the class IDs defined in semantic_class_name_to_id().
Also, correct the id_to_labels input with the labels from semantic_class_name_to_id() and return it.

Args:
img (np.ndarray): Semantic segmentation image to remap
id_to_labels (dict): Dictionary of semantic IDs to class labels
Returns:
np.ndarray: Remapped semantic segmentation image
dict: Corrected id_to_labels dictionary
"""
replicator_mapping = self._preprocess_semantic_labels(id_to_labels)

image_keys = np.unique(img)
assert set(image_keys).issubset(
Expand Down Expand Up @@ -447,18 +459,22 @@ def _register_instance(self, instance_name, id=False):
if instance_name not in registry.values():
registry[len(registry)] = instance_name

def _remap_bounding_box_semantic_ids(self, bboxes):
def _remap_bounding_box_semantic_ids(self, bboxes, id_to_labels):
"""
Remap the semantic IDs of the bounding boxes to our own semantic IDs.

Args:
bboxes (list of dict): List of bounding boxes to remap
id_to_labels (dict): Dictionary of semantic IDs to class labels
Returns:
list of dict: Remapped list of bounding boxes
dict: Remapped id_to_labels dictionary
"""
replicator_mapping = self._preprocess_semantic_labels(id_to_labels)
for bbox in bboxes:
bbox["semanticId"] = VisionSensor.SEMANTIC_REMAPPER.remap_bbox(bbox["semanticId"], self._scene)
return bboxes
bbox["semanticId"] = semantic_class_name_to_id()[replicator_mapping[bbox["semanticId"]]]
ChengshuLi marked this conversation as resolved.
Show resolved Hide resolved
info = {semantic_class_name_to_id()[val]: val for val in replicator_mapping.values()}
return bboxes, info

def add_modality(self, modality):
# Check if we already have this modality (if so, no need to initialize it explicitly)
Expand Down
3 changes: 2 additions & 1 deletion omnigibson/transition_rules.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import itertools
import json
import math
import operator
import os
from abc import ABCMeta, abstractmethod
Expand Down Expand Up @@ -1816,7 +1817,7 @@ def _spawn_object_in_container(obj):
# When ignore_nonrecipe_objects is True, we don't necessarily remove all objects in the container.
# Therefore, we need to check for contact when generating output systems.
check_contact=self.ignore_nonrecipe_objects,
max_samples=int(volume / (np.pi * (out_system.particle_radius**3) * 4 / 3)),
max_samples=math.ceil(volume / (np.pi * (out_system.particle_radius**3) * 4 / 3)),
)

# Return transition results
Expand Down
2 changes: 1 addition & 1 deletion omnigibson/utils/gym_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ def recursively_generate_compatible_dict(dic):
out[k] = recursively_generate_compatible_dict(dic=v)
elif isinstance(v, np.ndarray) and len(v.dtype) > 0:
# Map to list of tuples
out[k] = list(map(tuple, v))
out[k] = tuple(map(tuple, v))
else:
# Preserve the key-value pair
out[k] = v
Expand Down
18 changes: 0 additions & 18 deletions omnigibson/utils/vision_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -138,24 +138,6 @@ def remap(self, old_mapping, new_mapping, image, image_keys=None):

return remapped_img, remapped_labels

def remap_bbox(self, semantic_id, scene):
"""
Remaps a semantic id to a new id using the key_array.
Args:
semantic_id (int): The semantic id to remap.
scene: The scene we are remapping for.
Returns:
int: The remapped id.
"""
if semantic_id >= len(self.key_array):
if semantic_id not in self.warning_printed:
og.log.warning(
f"We do not have semantic information about bounding box semantic id {semantic_id} yet. Marking as unlabelled."
)
self.warning_printed.add(semantic_id)
return semantic_class_name_to_id()["unlabelled"]
return self.key_array[semantic_id]


def randomize_colors(N, bright=True):
"""
Expand Down
49 changes: 45 additions & 4 deletions tests/test_sensors.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,14 @@
import numpy as np
import pytest
from utils import SYSTEM_EXAMPLES, og_test, place_obj_on_floor_plane

import omnigibson as og
import omnigibson.utils.transform_utils as T
from omnigibson.sensors import VisionSensor
from omnigibson.utils.constants import semantic_class_id_to_name


@og_test
def test_seg(env):
def test_segmentation_modalities(env):
breakfast_table = env.scene.object_registry("name", "breakfast_table")
dishtowel = env.scene.object_registry("name", "dishtowel")
robot = env.scene.robots[0]
Expand All @@ -17,6 +17,10 @@ def test_seg(env):
robot.set_position_orientation([0, 0.8, 0.0], T.euler2quat([0, 0, -np.pi / 2]))
robot.reset()

modalities_required = ["seg_semantic", "seg_instance", "seg_instance_id"]
for modality in modalities_required:
robot.add_obs_modality(modality)

systems = [env.scene.get_system(system_name) for system_name in SYSTEM_EXAMPLES.keys()]
for i, system in enumerate(systems):
# Sample two particles for each system
Expand Down Expand Up @@ -93,5 +97,42 @@ def test_seg(env):
# assert set(seg_instance_id_info.values()) == set(expected_dict.values())


def test_clear_sim():
og.clear()
@og_test
def test_bbox_modalities(env):
breakfast_table = env.scene.object_registry("name", "breakfast_table")
dishtowel = env.scene.object_registry("name", "dishtowel")
robot = env.scene.robots[0]
place_obj_on_floor_plane(breakfast_table)
dishtowel.set_position_orientation([-0.4, 0.0, 0.55], [0, 0, 0, 1])
robot.set_position_orientation([0, 0.8, 0.0], T.euler2quat([0, 0, -np.pi / 2]))
robot.reset()

modalities_required = ["bbox_2d_tight", "bbox_2d_loose", "bbox_3d"]
for modality in modalities_required:
robot.add_obs_modality(modality)

og.sim.step()
for _ in range(3):
og.sim.render()

sensors = [s for s in robot.sensors.values() if isinstance(s, VisionSensor)]
assert len(sensors) > 0
vision_sensor = sensors[0]
all_observation, all_info = vision_sensor.get_obs()

bbox_2d_tight = all_observation["bbox_2d_tight"]
bbox_2d_loose = all_observation["bbox_2d_loose"]
bbox_3d = all_observation["bbox_3d"]

assert bbox_2d_tight.shape[0] == 4
assert bbox_2d_loose.shape[0] == 4
assert bbox_3d.shape[0] == 3

bbox_2d_expected_objs = set(["floors", "agent", "breakfast_table", "dishtowel"])
bbox_3d_expected_objs = set(["agent", "breakfast_table", "dishtowel"])

bbox_2d_objs = set([semantic_class_id_to_name()[bbox["semanticId"]] for bbox in bbox_2d_tight])
bbox_3d_objs = set([semantic_class_id_to_name()[bbox["semanticId"]] for bbox in bbox_3d])

assert bbox_2d_objs == bbox_2d_expected_objs
assert bbox_3d_objs == bbox_3d_expected_objs
2 changes: 1 addition & 1 deletion tests/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -170,7 +170,7 @@ def assert_test_env():
"robots": [
{
"type": "Fetch",
"obs_modalities": ["seg_semantic", "seg_instance", "seg_instance_id"],
"obs_modalities": "rgb",
"position": [150, 150, 100],
"orientation": [0, 0, 0, 1],
}
Expand Down
Loading