Skip to content

Releases: Spijkervet/CLMR

CLMR weights (MagnaTagATune, MLP)

19 Mar 12:14
Compare
Choose a tag to compare

Weights of a SampleCNN encoder pre-trained with CLMR, and a two-layer multi-layer perceptron trained on the music classification task using the learned representations from the frozen encoder.

CLMR weights (MagnaTagATune)

03 Jan 19:33
Compare
Choose a tag to compare

CLMR weights (MagnaTagATune, SampleCNN, 48 batch size, 1550 epochs).
Both of the SampleCNN encoder and the fine-tuned linear layer.

ROC-AUC_tag = 88.49
PR-AUC_tag = 35.37

Fine-tuned Linear Classifier weights

15 Jul 15:48
Compare
Choose a tag to compare

Weights of a fine-tuned linear classifier on the task of music classification on the MagnaTagATune dataset, using the pre-trained weights from https://github.com/Spijkervet/CLMR/releases/tag/1.0

CLMR weights (MagnaTagATune, SampleCNN, 48 batch size, 1550 epochs)

13 Jul 18:02
Compare
Choose a tag to compare

Configuration used for pre-training on the MagnaTagATune dataset using CLMR, with a SampleCNN encoder:

# distributed training
nodes: 1
gpus: 1 # I recommend always assigning 1 GPU to 1 node
nr: 0 # machine nr. in node (0 -- nodes - 1)
workers: 16

## dataset options
dataset: "magnatagatune"
data_input_dir: "./datasets"
pretrain_dataset: "magnatagatune"
download: 0


## task / dataset options
domain: "audio"
task: "tags"
model_name: "clmr"

## train options
seed: 42
batch_size: 48
start_epoch: 0
epochs: 2000
checkpoint_epochs: 10

## audio
audio_length: 59049
sample_rate: 22050

## audio transformations
transforms_polarity: 0.8
transforms_noise: 0.0
transforms_gain: 0.0
transforms_filters: 0.4
transforms_delay: 0.3

## loss options
optimizer: "Adam" # [Adam, LARS]
learning_rate: 3.0e-4 # for Adam optimizer, LARS uses batch-specific LR
weight_decay: 1.0e-4
temperature: 0.5

## supervised params
supervised: False # to train encoder in fully supervised fashion

## model options
normalize: True
projection_dim: 128
projector_layers: 2
dropout: 0.5


## reload options
model_path: "save" # set to the directory containing `checkpoint_##.tar` 
epoch_num: 0 # set to checkpoint number
finetune_model_path: ""
finetune_epoch_num: ""
reload: False


## linear evaluation options
mlp: False # use one extra hidden layer during fine-tuning
logistic_batch_size: 48
logistic_epochs: 10
logistic_lr: 0.001
reload_logreg: False

## train / fine-tune with percentage of total train data 
perc_train_data: 1.0