Skip to content
/ CLAT Public

[TMI 2024] Code for "Concept-based Lesion Aware Transformer for Interpretable Retinal Disease Diagnosis"

License

Notifications You must be signed in to change notification settings

Sorades/CLAT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CLAT

Official implementation of CLAT: Concept-based Lesion Aware Transformer for Interpretable Retinal Disease Diagnosis (TMI, 2024)

framework

Usage

Installation

Recommended environment:

  • python 3.9.7
  • pytorch 2.0.1
  • torchvision 0.15.2
  • lightning 2.1.0

To install the dependencies, run:

git clone https://github.com/Sorades/CLAT.git
cd CLAT
pip install -r requirements.txt

Dataset

The annotation files are placed at ./data

Training and Testing

Modify the settings in ./config/default.yaml, and then run the commands below to train and test the model:

python main.py fit_and_test --config configs/default.yaml --data configs/data/FGADDR.yaml

# test with automatic intervention
python main.py exp_int --config configs/default.yaml --data configs/data/FGADDR.yaml

Citation

@article{wen2024concept,
  title={Concept-based Lesion Aware Transformer for Interpretable Retinal Disease Diagnosis},
  author={Wen, Chi and Ye, Mang and Li, He and Chen, Ting and Xiao, Xuan},
  journal={IEEE Transactions on Medical Imaging},
  year={2024},
  publisher={IEEE},
  doi={10.1109/TMI.2024.3429148}
}

About

[TMI 2024] Code for "Concept-based Lesion Aware Transformer for Interpretable Retinal Disease Diagnosis"

Topics

Resources

License

Stars

Watchers

Forks

Languages