Official implementation of CLAT: Concept-based Lesion Aware Transformer for Interpretable Retinal Disease Diagnosis (TMI, 2024)
Recommended environment:
- python 3.9.7
- pytorch 2.0.1
- torchvision 0.15.2
- lightning 2.1.0
To install the dependencies, run:
git clone https://github.com/Sorades/CLAT.git
cd CLAT
pip install -r requirements.txt
The annotation files are placed at ./data
Modify the settings in ./config/default.yaml
, and then run the commands below to train and test the model:
python main.py fit_and_test --config configs/default.yaml --data configs/data/FGADDR.yaml
# test with automatic intervention
python main.py exp_int --config configs/default.yaml --data configs/data/FGADDR.yaml
@article{wen2024concept,
title={Concept-based Lesion Aware Transformer for Interpretable Retinal Disease Diagnosis},
author={Wen, Chi and Ye, Mang and Li, He and Chen, Ting and Xiao, Xuan},
journal={IEEE Transactions on Medical Imaging},
year={2024},
publisher={IEEE},
doi={10.1109/TMI.2024.3429148}
}