Skip to content

Commit

Permalink
Merge pull request #1475 from SixLabors/sp/bokeh-blur-speedup
Browse files Browse the repository at this point in the history
Optimize bokeh blur convolution
  • Loading branch information
JimBobSquarePants authored Dec 15, 2020
2 parents ff94d20 + a8cae3f commit f1a0fb6
Show file tree
Hide file tree
Showing 9 changed files with 465 additions and 177 deletions.
109 changes: 0 additions & 109 deletions src/ImageSharp/Common/Helpers/Buffer2DUtils.cs

This file was deleted.

135 changes: 135 additions & 0 deletions src/ImageSharp/Common/Helpers/Numerics.cs
Original file line number Diff line number Diff line change
Expand Up @@ -547,5 +547,140 @@ public static void UnPremultiply(Span<Vector4> vectors)
}
}
}

/// <summary>
/// Calculates the cube pow of all the XYZ channels of the input vectors.
/// </summary>
/// <param name="vectors">The span of vectors</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static unsafe void CubePowOnXYZ(Span<Vector4> vectors)
{
ref Vector4 baseRef = ref MemoryMarshal.GetReference(vectors);
ref Vector4 endRef = ref Unsafe.Add(ref baseRef, vectors.Length);

while (Unsafe.IsAddressLessThan(ref baseRef, ref endRef))
{
Vector4 v = baseRef;
float a = v.W;

// Fast path for the default gamma exposure, which is 3. In this case we can skip
// calling Math.Pow 3 times (one per component), as the method is an internal call and
// introduces quite a bit of overhead. Instead, we can just manually multiply the whole
// pixel in Vector4 format 3 times, and then restore the alpha channel before copying it
// back to the target index in the temporary span. The whole iteration will get completely
// inlined and traslated into vectorized instructions, with much better performance.
v = v * v * v;
v.W = a;

baseRef = v;
baseRef = ref Unsafe.Add(ref baseRef, 1);
}
}

/// <summary>
/// Calculates the cube root of all the XYZ channels of the input vectors.
/// </summary>
/// <param name="vectors">The span of vectors</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static unsafe void CubeRootOnXYZ(Span<Vector4> vectors)
{
#if SUPPORTS_RUNTIME_INTRINSICS
if (Sse41.IsSupported)
{
ref Vector128<float> vectors128Ref = ref Unsafe.As<Vector4, Vector128<float>>(ref MemoryMarshal.GetReference(vectors));
ref Vector128<float> vectors128End = ref Unsafe.Add(ref vectors128Ref, vectors.Length);

var v128_341 = Vector128.Create(341);
Vector128<int> v128_negativeZero = Vector128.Create(-0.0f).AsInt32();
Vector128<int> v128_one = Vector128.Create(1.0f).AsInt32();

var v128_13rd = Vector128.Create(1 / 3f);
var v128_23rds = Vector128.Create(2 / 3f);

while (Unsafe.IsAddressLessThan(ref vectors128Ref, ref vectors128End))
{
Vector128<float> vecx = vectors128Ref;
Vector128<int> veax = vecx.AsInt32();

// If we can use SSE41 instructions, we can vectorize the entire cube root calculation, and also execute it
// directly on 32 bit floating point values. What follows is a vectorized implementation of this method:
// https://www.musicdsp.org/en/latest/Other/206-fast-cube-root-square-root-and-reciprocal-for-x86-sse-cpus.html.
// Furthermore, after the initial setup in vectorized form, we're doing two Newton approximations here
// using a different succession (the same used below), which should be less unstable due to not having cube pow.
veax = Sse2.AndNot(v128_negativeZero, veax);
veax = Sse2.Subtract(veax, v128_one);
veax = Sse2.ShiftRightArithmetic(veax, 10);
veax = Sse41.MultiplyLow(veax, v128_341);
veax = Sse2.Add(veax, v128_one);
veax = Sse2.AndNot(v128_negativeZero, veax);
veax = Sse2.Or(veax, Sse2.And(vecx.AsInt32(), v128_negativeZero));

Vector128<float> y4 = veax.AsSingle();

if (Fma.IsSupported)
{
y4 = Fma.MultiplyAdd(v128_23rds, y4, Sse.Multiply(v128_13rd, Sse.Divide(vecx, Sse.Multiply(y4, y4))));
y4 = Fma.MultiplyAdd(v128_23rds, y4, Sse.Multiply(v128_13rd, Sse.Divide(vecx, Sse.Multiply(y4, y4))));
}
else
{
y4 = Sse.Add(Sse.Multiply(v128_23rds, y4), Sse.Multiply(v128_13rd, Sse.Divide(vecx, Sse.Multiply(y4, y4))));
y4 = Sse.Add(Sse.Multiply(v128_23rds, y4), Sse.Multiply(v128_13rd, Sse.Divide(vecx, Sse.Multiply(y4, y4))));
}

y4 = Sse41.Insert(y4, vecx, 0xF0);

vectors128Ref = y4;
vectors128Ref = ref Unsafe.Add(ref vectors128Ref, 1);
}

return;
}
#endif
ref Vector4 vectorsRef = ref MemoryMarshal.GetReference(vectors);
ref Vector4 vectorsEnd = ref Unsafe.Add(ref vectorsRef, vectors.Length);

// Fallback with scalar preprocessing and vectorized approximation steps
while (Unsafe.IsAddressLessThan(ref vectorsRef, ref vectorsEnd))
{
Vector4 v = vectorsRef;

double
x64 = v.X,
y64 = v.Y,
z64 = v.Z;
float a = v.W;

ulong
xl = *(ulong*)&x64,
yl = *(ulong*)&y64,
zl = *(ulong*)&z64;

// Here we use a trick to compute the starting value x0 for the cube root. This is because doing
// pow(x, 1 / gamma) is the same as the gamma-th root of x, and since gamme is 3 in this case,
// this means what we actually want is to find the cube root of our clamped values.
// For more info on the constant below, see:
// https://community.intel.com/t5/Intel-C-Compiler/Fast-approximate-of-transcendental-operations/td-p/1044543.
// Here we perform the same trick on all RGB channels separately to help the CPU execute them in paralle, and
// store the alpha channel to preserve it. Then we set these values to the fields of a temporary 128-bit
// register, and use it to accelerate two steps of the Newton approximation using SIMD.
xl = 0x2a9f8a7be393b600 + (xl / 3);
yl = 0x2a9f8a7be393b600 + (yl / 3);
zl = 0x2a9f8a7be393b600 + (zl / 3);

Vector4 y4;
y4.X = (float)*(double*)&xl;
y4.Y = (float)*(double*)&yl;
y4.Z = (float)*(double*)&zl;
y4.W = 0;

y4 = (2 / 3f * y4) + (1 / 3f * (v / (y4 * y4)));
y4 = (2 / 3f * y4) + (1 / 3f * (v / (y4 * y4)));
y4.W = a;

vectorsRef = y4;
vectorsRef = ref Unsafe.Add(ref vectorsRef, 1);
}
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
using System;
using System.Numerics;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using SixLabors.ImageSharp.Advanced;
using SixLabors.ImageSharp.Memory;
using SixLabors.ImageSharp.PixelFormats;
Expand Down Expand Up @@ -91,31 +92,30 @@ public IImageProcessor<TPixel> CreatePixelSpecificProcessor<TPixel>(Configuratio
/// it is actually used, because it does not use any generic parameters internally. Defining in a non-generic class means that there will only
/// ever be a single instantiation of this type for the JIT/AOT compilers to process, instead of having duplicate versions for each pixel type.
/// </remarks>
internal readonly struct ApplyHorizontalConvolutionRowOperation : IRowOperation
internal readonly struct SecondPassConvolutionRowOperation : IRowOperation
{
private readonly Rectangle bounds;
private readonly Buffer2D<Vector4> targetValues;
private readonly Buffer2D<ComplexVector4> sourceValues;
private readonly KernelSamplingMap map;
private readonly Complex64[] kernel;
private readonly float z;
private readonly float w;
private readonly int maxY;
private readonly int maxX;

[MethodImpl(InliningOptions.ShortMethod)]
public ApplyHorizontalConvolutionRowOperation(
public SecondPassConvolutionRowOperation(
Rectangle bounds,
Buffer2D<Vector4> targetValues,
Buffer2D<ComplexVector4> sourceValues,
KernelSamplingMap map,
Complex64[] kernel,
float z,
float w)
{
this.bounds = bounds;
this.maxY = this.bounds.Bottom - 1;
this.maxX = this.bounds.Right - 1;
this.targetValues = targetValues;
this.sourceValues = sourceValues;
this.map = map;
this.kernel = kernel;
this.z = z;
this.w = w;
Expand All @@ -125,11 +125,33 @@ public ApplyHorizontalConvolutionRowOperation(
[MethodImpl(InliningOptions.ShortMethod)]
public void Invoke(int y)
{
Span<Vector4> targetRowSpan = this.targetValues.GetRowSpan(y).Slice(this.bounds.X);
int boundsX = this.bounds.X;
int boundsWidth = this.bounds.Width;
int kernelSize = this.kernel.Length;

for (int x = 0; x < this.bounds.Width; x++)
Span<int> rowOffsets = this.map.GetRowOffsetSpan();
ref int sampleRowBase = ref Unsafe.Add(ref MemoryMarshal.GetReference(rowOffsets), (y - this.bounds.Y) * kernelSize);

// The target buffer is zeroed initially and then it accumulates the results
// of each partial convolution, so we don't have to clear it here as well
ref Vector4 targetBase = ref this.targetValues.GetElementUnsafe(boundsX, y);
ref Complex64 kernelBase = ref this.kernel[0];

for (int kY = 0; kY < kernelSize; kY++)
{
Buffer2DUtils.Convolve4AndAccumulatePartials(this.kernel, this.sourceValues, targetRowSpan, y, x, this.bounds.Y, this.maxY, this.bounds.X, this.maxX, this.z, this.w);
// Get the precalculated source sample row for this kernel row and copy to our buffer
int sampleY = Unsafe.Add(ref sampleRowBase, kY);
ref ComplexVector4 sourceBase = ref this.sourceValues.GetElementUnsafe(0, sampleY);
Complex64 factor = Unsafe.Add(ref kernelBase, kY);

for (int x = 0; x < boundsWidth; x++)
{
ref Vector4 target = ref Unsafe.Add(ref targetBase, x);
ComplexVector4 sample = Unsafe.Add(ref sourceBase, x);
ComplexVector4 partial = factor * sample;

target += partial.WeightedSum(this.z, this.w);
}
}
}
}
Expand Down
Loading

0 comments on commit f1a0fb6

Please sign in to comment.