Skip to content

Tensor network based quantum circuit simulator for the NISQ era

License

Notifications You must be signed in to change notification settings

SexyCarrots/tensorcircuit

ย 
ย 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

English | ็ฎ€ไฝ“ไธญๆ–‡

TensorCircuit is the next generation of quantum circuit simulators with support for automatic differentiation, just-in-time compiling, hardware acceleration, and vectorized parallelism.

TensorCircuit is built on top of modern machine learning frameworks and is machine learning backend agnostic. It is specifically suitable for highly efficient simulations of quantum-classical hybrid paradigm and variational quantum algorithms.

Getting Started

Please begin with Quick Start.

For more information and introductions, please refer to helpful example scripts and full documentation. API docstrings and test cases in tests are also informative.

The following are some minimal demos.

  • Circuit manipulation:
import tensorcircuit as tc
c = tc.Circuit(2)
c.H(0)
c.CNOT(0,1)
c.rx(1, theta=0.2)
print(c.wavefunction())
print(c.expectation_ps(z=[0, 1]))
print(c.sample(allow_state=True, batch=1024, format="count_dict_bin"))
  • Runtime behavior customization:
tc.set_backend("tensorflow")
tc.set_dtype("complex128")
tc.set_contractor("greedy")
  • Automatic differentiations with jit:
def forward(theta):
    c = tc.Circuit(2)
    c.R(0, theta=theta, alpha=0.5, phi=0.8)
    return tc.backend.real(c.expectation((tc.gates.z(), [0])))

g = tc.backend.grad(forward)
g = tc.backend.jit(g)
theta = tc.array_to_tensor(1.0)
print(g(theta))

Install

The package is written in pure Python and can be obtained via pip as:

pip install tensorcircuit

We recommend you install this package with tensorflow also installed as:

pip install tensorcircuit[tensorflow]

Other optional dependencies include [torch], [jax] and [qiskit].

For the nightly build of tensorcircuit with new features, try:

pip uninstall tensorcircuit
pip install tensorcircuit-nightly

We also have Docker support.

Advantages

  • Tensor network simulation engine based

  • JIT, AD, vectorized parallelism compatible, GPU support

  • Efficiency

    • Time: 10 to 10^6+ times acceleration compared to TensorFlow Quantum, Pennylane or Qiskit

    • Space: 600+ qubits 1D VQE workflow (converged energy inaccuracy: < 1%)

  • Elegance

    • Flexibility: customized contraction, multiple ML backend/interface choices, multiple dtype precisions

    • API design: quantum for humans, less code, more power

Contributing

Status

This project is released by Tencent Quantum Lab and is created and maintained by Shi-Xin Zhang with current core authors Shi-Xin Zhang and Yu-Qin Chen. We also thank contributions from the lab and the open source community.

Citation

If this project helps in your research, please cite our software whitepaper published in Quantum:

TensorCircuit: a Quantum Software Framework for the NISQ Era

which is also a good introduction to the software.

Guidelines

For contribution guidelines and notes, see CONTRIBUTING.

We welcome issues, PRs, and discussions from everyone, and these are all hosted on GitHub.

Contributors

Shixin Zhang
Shixin Zhang

๐Ÿ’ป ๐Ÿ“– ๐Ÿ’ก ๐Ÿค” ๐Ÿš‡ ๐Ÿšง ๐Ÿ”ฌ ๐Ÿ‘€ ๐ŸŒ โš ๏ธ โœ… ๐Ÿ“ข ๐Ÿ’ฌ
Yuqin Chen
Yuqin Chen

๐Ÿ’ป ๐Ÿ“– ๐Ÿ’ก ๐Ÿค” ๐Ÿ”ฌ โš ๏ธ โœ… ๐Ÿ“ข
Jiezhong Qiu
Jiezhong Qiu

๐Ÿ’ป ๐Ÿ’ก ๐Ÿค” ๐Ÿ”ฌ
Weitang Li
Weitang Li

๐Ÿ’ป ๐Ÿ“– ๐Ÿค” ๐Ÿ”ฌ โš ๏ธ ๐Ÿ“ข
Jiace Sun
Jiace Sun

๐Ÿ’ป ๐Ÿ“– ๐Ÿ’ก ๐Ÿค” ๐Ÿ”ฌ โš ๏ธ
Zhouquan Wan
Zhouquan Wan

๐Ÿ’ป ๐Ÿ“– ๐Ÿ’ก ๐Ÿค” ๐Ÿ”ฌ โš ๏ธ โœ…
Shuo Liu
Shuo Liu

๐Ÿ’ก ๐Ÿ”ฌ โœ…
Hao Yu
Hao Yu

๐Ÿ’ป ๐Ÿ“– ๐Ÿš‡ โš ๏ธ โœ…
Xinghan Yang
Xinghan Yang

๐Ÿ“– ๐ŸŒ โœ…
JachyMeow
JachyMeow

โœ… ๐ŸŒ
Zhaofeng Ye
Zhaofeng Ye

๐ŸŽจ
erertertet
erertertet

๐Ÿ’ป ๐Ÿ“– โš ๏ธ
Yicong Zheng
Yicong Zheng

โœ…
Zixuan Song
Zixuan Song

๐Ÿ“– ๐ŸŒ ๐Ÿ’ป โš ๏ธ
Hao Xie
Hao Xie

๐Ÿ“–
Pramit Singh
Pramit Singh

โš ๏ธ
Jonathan Allcock
Jonathan Allcock

๐Ÿ“– ๐Ÿค” ๐Ÿ“ข
nealchen2003
nealchen2003

๐Ÿ“–
้šๅ…ฌ่ง‚้ฑผ
้šๅ…ฌ่ง‚้ฑผ

๐Ÿ’ป โš ๏ธ

Research and Applications

DQAS

For the application of Differentiable Quantum Architecture Search, see applications. Reference paper: https://arxiv.org/pdf/2010.08561.pdf (published in QST).

VQNHE

For the application of Variational Quantum-Neural Hybrid Eigensolver, see applications. Reference paper: https://arxiv.org/pdf/2106.05105.pdf (published in PRL) and https://arxiv.org/pdf/2112.10380.pdf.

VQEX - MBL

For the application of VQEX on MBL phase identification, see the tutorial. Reference paper: https://arxiv.org/pdf/2111.13719.pdf (published in PRB).

Stark - DTC

For the numerical demosntration of discrete time crystal enabled by Stark many-body localization, see the Floquet simulation demo. Reference paper: https://arxiv.org/pdf/2208.02866.pdf (published in PRL).

About

Tensor network based quantum circuit simulator for the NISQ era

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.7%
  • Other 0.3%