Set up a conda/venv virtual env and install dependencies from requirements.txt
Install with pip using: pip install openvino
from https://pypi.org/project/openvino/
https://github.com/odundar/openvino_python_samples
# image mode
$ python openvino_person_detection.py -m image -i PATH_TO_IMG -o OUTPUT_DIR
# video mode
$ python openvino_person_detection.py -m video -i PATH_TO_VID -o OUTPUT_DIR
# webcam mode
$ python openvino_person_detection.py -m webcam -o OUTPUT_DIR
# video mode
$ python openvino_person_reidentification.py -m video -i PATH_TO_VID -o OUTPUT_DIR
# video mode
$ python openvino_person_action_counting.py -m video -i PATH_TO_VID -o OUTPUT_DIR
- OpenVINO Model Documentation and Download
https://docs.openvinotoolkit.org/2021.3/omz_models_group_intel.html
- OpenVINO GitHub Public Model Repo
https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public
- Download Intel OpenVINO IR (Intermediate Representation) models
-
OpenVino Workbench with Docker (Recommended) https://docs.openvino.ai/latest/workbench_docs_Workbench_DG_Introduction.html
-
Python
openvino-dev
pip pkg https://github.com/openvinotoolkit/open_model_zoo/blob/master/tools/model_tools/README.md
- Convert to OpenVINO format with Docker
Local repository available in ./google_teachable_machine_to_openvino
https://github.com/ojjsaw/teachable-machine-openvino.git
- OpenVINO training extensions
https://github.com/openvinotoolkit/training_extensions
- Deep Learning Workbench from DockerHub
Download & Convert to IR models for OpenVINO Inference
https://docs.openvinotoolkit.org/latest/workbench_docs_Workbench_DG_Install_from_Docker_Hub.html