Python implementation of the main results for the paper entitled: Conformal prediction of molecule-induced cancer cell growth inhibition challenged by strong distribution shifts
Utilizing the UMAP-based clustering method, 7 clusters were derived for non-outlier molecules, with the outlier set forming its distinct cluster.
![cell_split](https://private-user-images.githubusercontent.com/50385322/294570806-607ac164-52c6-49ec-a75e-46e9ca8e2be4.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MzkzMTk4NTMsIm5iZiI6MTczOTMxOTU1MywicGF0aCI6Ii81MDM4NTMyMi8yOTQ1NzA4MDYtNjA3YWMxNjQtNTJjNi00OWVjLWE3NWUtNDZlOWNhOGUyYmU0LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMTIlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjEyVDAwMTkxM1omWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWZmMzA0ZjYzMjk0OGIyYmM4MzQwYzQzNzM2NDZjM2M1Njc3MmMwYjdjYjRlMzAzYWE1NjM3M2E5YTljNzZmMzUmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.sIIo_N0AvtG7NIEoMGlyCEL_Q1Ar5dKmzBsPlCyIrm4)
- Python 3.9.7
- Download and store the from the NCI-60 Growth Inhibition Data.
- The required files contain the endpoints calculated from concentration curves ("CANCER60GI50_Oct2020.LST", for instance) and SMILES ("Chem2D_Jun2016.smi", for instance). Other releases of both files are also available for download.
To run:
jupyter notebook code_Figure5.ipynb
jupyter notebook code_Figure6.ipynb
Output: Figures 5 and 6.
MIT
- Saiveth Hernández-Hernández, email: saiveth.hernadez@inserm.fr
- Pedro J.Ballester, email: p.ballester@imperial.ac.uk