Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(openchallenges): pull data from OC Data google sheet #2959

Merged
merged 15 commits into from
Jan 15, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions apps/openchallenges/data-lambda/.env.example
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
TYPE="service_account"
PROJECT_ID="UPDATE_ME"
PRIVATE_KEY_ID="UPDATE_ME"
PRIVATE_KEY="UPDATE_ME"
CLIENT_EMAIL="UPDATE_ME"
CLIENT_ID="UPDATE_ME"
AUTH_URI="https://accounts.google.com/o/oauth2/auth"
TOKEN_URI="https://oauth2.googleapis.com/token"
AUTH_PROVIDER_X509_CERT_URL="https://www.googleapis.com/oauth2/v1/certs"
CLIENT_X509_CERT_URL="UPDATE_ME"
UNIVERSE_DOMAIN="googleapis.com"
2 changes: 1 addition & 1 deletion apps/openchallenges/data-lambda/Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ RUN poetry export --without-hashes --format=requirements.txt > requirements.txt
FROM public.ecr.aws/lambda/python:3.13

COPY --from=builder /app/requirements.txt ${LAMBDA_TASK_ROOT}/
COPY sandbox_lambda_python/app.py ${LAMBDA_TASK_ROOT}/
COPY openchallenges_data_lambda/app.py ${LAMBDA_TASK_ROOT}/

RUN python3.13 -m pip install --no-cache-dir -r requirements.txt -t .

Expand Down
277 changes: 277 additions & 0 deletions apps/openchallenges/data-lambda/openchallenges_data_lambda/app.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,277 @@
import os
import json

import gspread
import numpy as np
import pandas as pd


GOOGLE_SHEET_CREDENTIALS_FILE = "service_account.json"
GOOGLE_SHEET_TITLE = "OpenChallenges Data"


def lambda_handler(event, context):
"""Sample pure Lambda function

Parameters
----------
event: dict, required
API Gateway Lambda Proxy Input Format

Event doc: https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html#api-gateway-simple-proxy-for-lambda-input-format

context: object, required
Lambda Context runtime methods and attributes

Context doc: https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html

Returns
------
API Gateway Lambda Proxy Output Format: dict

Return doc: https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
"""

write_credentials_file(GOOGLE_SHEET_CREDENTIALS_FILE)

try:
google_client = gspread.service_account(filename=GOOGLE_SHEET_CREDENTIALS_FILE)
except Exception as err:
message = "Private key not found in the credentials file. Please try again."
else:
try:
wks = google_client.open(GOOGLE_SHEET_TITLE)

platforms = get_platform_data(wks)
print(platforms.head())

roles = get_roles(wks)
print(roles.head())

categories = get_challenge_categories(wks)
print(categories.head())

organizations = get_organization_data(wks)
print(organizations.head())

edam_data_annotations = get_edam_annotations(wks)
print(edam_data_annotations.head())

challenges, incentives, sub_types = get_challenge_data(wks)
print(challenges.head())
print(incentives.head())
print(sub_types.head())

message = "Data successfully pulled from OC Data google sheet."

except Exception as err:
message = f"Something went wrong with pulling the data: {err}."

data = {"message": message}
return {
"statusCode": 200,
"body": json.dumps(data),
}


def write_credentials_file(output_json):
"""Write credentials JSON file for Google Sheets API authentication."""
with open(output_json, "w") as out:
credentials = {
"type": os.getenv("TYPE"),
"project_id": os.getenv("PROJECT_ID"),
"private_key_id": os.getenv("PRIVATE_KEY_ID"),
"private_key": os.getenv("PRIVATE_KEY").encode().decode("unicode_escape"),
"client_email": os.getenv("CLIENT_EMAIL"),
"client_id": os.getenv("CLIENT_ID"),
"auth_uri": os.getenv("AUTH_URI"),
"token_uri": os.getenv("TOKEN_URI"),
"auth_provider_x509_cert_url": os.getenv("AUTH_PROVIDER_X509_CERT_URL"),
"client_x509_cert_url": os.getenv("CLIENT_X509_CERT_URL"),
"universe_domain": os.getenv("UNIVERSE_DOMAIN"),
}
out.write(json.dumps(credentials))


def get_challenge_data(wks, sheet_name="challenges"):
"""Get challenges data and clean up as needed.

Output:
- challenges
- challenge incentives
- challenge submission types
"""
df = pd.DataFrame(wks.worksheet(sheet_name).get_all_records()).fillna("")
df.loc[df._platform == "Other", "platform"] = "\\N"

challenges = df[
[
"id",
"slug",
"name",
"headline",
"description",
"avatar_url",
"website_url",
"status",
"platform",
"doi",
"start_date",
"end_date",
"operation_id",
"created_at",
"updated_at",
]
]
challenges = (
challenges.replace({r"\s+$": "", r"^\s+": ""}, regex=True)
.replace(r"\n", " ", regex=True)
.replace("'", "''")
.replace("\u2019", "''", regex=True) # replace curly right-quote
.replace("\u202f", " ", regex=True) # replace narrow no-break space
.replace("\u2060", "", regex=True) # remove word joiner
)
challenges["headline"] = (
challenges["headline"]
.astype(str)
.apply(lambda x: x[:76] + "..." if len(x) > 80 else x)
)
challenges["description"] = (
challenges["description"]
.astype(str)
.apply(lambda x: x[:995] + "..." if len(x) > 1000 else x)
)
challenges.loc[challenges.start_date == "", "start_date"] = "\\N"
challenges.loc[challenges.end_date == "", "end_date"] = "\\N"
challenges.loc[challenges.operation_id == "", "operation_id"] = "\\N"

incentives = pd.concat(
[
df[df.monetary_incentive == "TRUE"][["id", "created_at"]].assign(
incentives="monetary"
),
df[df.publication_incentive == "TRUE"][["id", "created_at"]].assign(
incentives="publication"
),
df[df.speaking_incentive == "TRUE"][["id", "created_at"]].assign(
incentives="speaking_engagement"
),
df[df.other_incentive == "TRUE"][["id", "created_at"]].assign(
incentives="other"
),
]
).rename(columns={"id": "challenge_id"})
incentives["incentives"] = pd.Categorical(
incentives["incentives"],
categories=["monetary", "publication", "speaking_engagement", "other"],
)
incentives = incentives.sort_values(["challenge_id", "incentives"])
incentives.index = np.arange(1, len(incentives) + 1)

sub_types = pd.concat(
[
df[df.file_submission == "TRUE"][["id", "created_at"]].assign(
submission_types="prediction_file"
),
df[df.container_submission == "TRUE"][["id", "created_at"]].assign(
submission_types="container_image"
),
df[df.notebook_submission == "TRUE"][["id", "created_at"]].assign(
submission_types="notebook"
),
df[df.mlcube_submission == "TRUE"][["id", "created_at"]].assign(
submission_types="mlcube"
),
df[df.other_submission == "TRUE"][["id", "created_at"]].assign(
submission_types="other"
),
]
).rename(columns={"id": "challenge_id"})
sub_types["submission_types"] = pd.Categorical(
sub_types["submission_types"],
categories=[
"prediction_file",
"container_image",
"notebook",
"mlcube",
"other",
],
)
sub_types = sub_types.sort_values(["challenge_id", "submission_types"])
sub_types.index = np.arange(1, len(sub_types) + 1)

return (
challenges,
incentives[["incentives", "challenge_id", "created_at"]],
sub_types[["submission_types", "challenge_id", "created_at"]],
)


def get_challenge_categories(wks, sheet_name="challenge_category"):
"""Get challenge categories."""
return pd.DataFrame(wks.worksheet(sheet_name).get_all_records()).fillna("")[
["id", "challenge_id", "category"]
]


def get_platform_data(wks, sheet_name="platforms"):
"""Get platform data and clean up as needed."""
platforms = pd.DataFrame(wks.worksheet(sheet_name).get_all_records()).fillna("")
return platforms[platforms._public == "TRUE"][
["id", "slug", "name", "avatar_url", "website_url", "created_at", "updated_at"]
]


def get_organization_data(wks, sheet_name="organizations"):
"""Get organization data and clean up as needed."""
organizations = pd.DataFrame(wks.worksheet(sheet_name).get_all_records()).fillna("")
organizations = organizations[organizations._public == "TRUE"][
[
"id",
"name",
"login",
"avatar_url",
"website_url",
"description",
"challenge_count",
"created_at",
"updated_at",
"acronym",
]
]
organizations = (
organizations.replace({r"\s+$": "", r"^\s+": ""}, regex=True)
.replace(r"\n", " ", regex=True)
.replace("'", "''")
.replace("\u2019", "''", regex=True) # replace curly right-quote
.replace("\u202f", " ", regex=True) # replace narrow no-break space
.replace("\u2060", "", regex=True) # remove word joiner
)
organizations["description"] = (
organizations["description"]
.astype(str)
.apply(lambda x: x[:995] + "..." if len(x) > 1000 else x)
)
return organizations


def get_roles(wks, sheet_name="contribution_role"):
"""Get data on organization's role(s) in challenges."""
return (
pd.DataFrame(wks.worksheet(sheet_name).get_all_records())
.fillna("")
.drop(["_challenge", "_organization"], axis=1)
)


def get_edam_annotations(wks, sheet_name="challenge_data"):
"""Get data on challenge's EDAM annotations."""
return (
pd.DataFrame(wks.worksheet(sheet_name).get_all_records())
.fillna("")
.drop(["_challenge", "_edam_name"], axis=1)
)


if __name__ == "__main__":
lambda_handler({}, "")
Loading
Loading