-
Notifications
You must be signed in to change notification settings - Fork 4
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Support Vector Machine for regression and for classification #154
Labels
enhancement 💡
New feature or request
good first issue
Good for newcomers
released
Included in a release
Comments
This was referenced Apr 4, 2023
lars-reimann
pushed a commit
that referenced
this issue
May 11, 2023
## [0.12.0](v0.11.0...v0.12.0) (2023-05-11) ### Features * add `learning_rate` to AdaBoost classifier and regressor. ([#251](#251)) ([7f74440](7f74440)), closes [#167](#167) * add alpha parameter to `lasso_regression` ([#232](#232)) ([b5050b9](b5050b9)), closes [#163](#163) * add parameter `lasso_ratio` to `ElasticNetRegression` ([#237](#237)) ([4a1a736](4a1a736)), closes [#166](#166) * Add parameter `number_of_tree` to `RandomForest` classifier and regressor ([#230](#230)) ([414336a](414336a)), closes [#161](#161) * Added `Table.plot_boxplots` to plot a boxplot for each numerical column in the table ([#254](#254)) ([0203a0c](0203a0c)), closes [#156](#156) [#239](#239) * Added `Table.plot_histograms` to plot a histogram for each column in the table ([#252](#252)) ([e27d410](e27d410)), closes [#157](#157) * Added `Table.transform_table` method which returns the transformed Table ([#229](#229)) ([0a9ce72](0a9ce72)), closes [#110](#110) * Added alpha parameter to `RidgeRegression` ([#231](#231)) ([1ddc948](1ddc948)), closes [#164](#164) * Added Column#transform ([#270](#270)) ([40fb756](40fb756)), closes [#255](#255) * Added method `Table.inverse_transform_table` which returns the original table ([#227](#227)) ([846bf23](846bf23)), closes [#111](#111) * Added parameter `c` to `SupportVectorMachines` ([#267](#267)) ([a88eb8b](a88eb8b)), closes [#169](#169) * Added parameter `maximum_number_of_learner` and `learner` to `AdaBoost` ([#269](#269)) ([bb5a07e](bb5a07e)), closes [#171](#171) [#173](#173) * Added parameter `number_of_trees` to `GradientBoosting` ([#268](#268)) ([766f2ff](766f2ff)), closes [#170](#170) * Allow arguments of type pathlib.Path for file I/O methods ([#228](#228)) ([2b58c82](2b58c82)), closes [#146](#146) * convert `Schema` to `dict` and format it nicely in a notebook ([#244](#244)) ([ad1cac5](ad1cac5)), closes [#151](#151) * Convert between Excel file and `Table` ([#233](#233)) ([0d7a998](0d7a998)), closes [#138](#138) [#139](#139) * convert containers for tabular data to HTML ([#243](#243)) ([683c279](683c279)), closes [#140](#140) * make `Column` a subclass of `Sequence` ([#245](#245)) ([a35b943](a35b943)) * mark optional hyperparameters as keyword only ([#296](#296)) ([44a41eb](44a41eb)), closes [#278](#278) * move exceptions back to common package ([#295](#295)) ([a91172c](a91172c)), closes [#177](#177) [#262](#262) * precision metric for classification ([#272](#272)) ([5adadad](5adadad)), closes [#185](#185) * Raise error if an untagged table is used instead of a `TaggedTable` ([#234](#234)) ([8eea3dd](8eea3dd)), closes [#192](#192) * recall and F1-score metrics for classification ([#277](#277)) ([2cf93cc](2cf93cc)), closes [#187](#187) [#186](#186) * replace prefix `n` with `number_of` ([#250](#250)) ([f4f44a6](f4f44a6)), closes [#171](#171) * set `alpha` parameter for regularization of `ElasticNetRegression` ([#238](#238)) ([e642d1d](e642d1d)), closes [#165](#165) * Set `column_names` in `fit` methods of table transformers to be required ([#225](#225)) ([2856296](2856296)), closes [#179](#179) * set learning rate of Gradient Boosting models ([#253](#253)) ([9ffaf55](9ffaf55)), closes [#168](#168) * Support vector machine for regression and for classification ([#236](#236)) ([7f6c3bd](7f6c3bd)), closes [#154](#154) * usable constructor for `Table` ([#294](#294)) ([56a1fc4](56a1fc4)), closes [#266](#266) * usable constructor for `TaggedTable` ([#299](#299)) ([01c3ad9](01c3ad9)), closes [#293](#293) ### Bug Fixes * OneHotEncoder no longer creates duplicate column names ([#271](#271)) ([f604666](f604666)), closes [#201](#201) * selectively ignore one warning instead of all warnings ([#235](#235)) ([3aad07d](3aad07d))
🎉 This issue has been resolved in version 0.12.0 🎉 The release is available on:
Your semantic-release bot 📦🚀 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Labels
enhancement 💡
New feature or request
good first issue
Good for newcomers
released
Included in a release
Is your feature request related to a problem?
A support vector machine (SVM) is a well-known ML model that we don't support at the moment. It can be used for classification and regression.
Desired solution
For classification:
SupportVectorMachine
tosafeds.ml.classical.classification
that wrapsSVC
ofscikit-learn
Classifier
For regression:
SupportVectorMachine
tosafeds.ml.classical.regression
that wrapsSVR
ofscikit-learn
Regressor
The text was updated successfully, but these errors were encountered: