-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into 110-method-in-table-to-apply-transformer
# Conflicts: # src/safeds/data/tabular/containers/_table.py
- Loading branch information
Showing
7 changed files
with
223 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -45,5 +45,5 @@ report/ | |
megalinter-reports/ | ||
|
||
# Other | ||
.DS_Store/ | ||
.DS_Store | ||
*.log |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
119 changes: 119 additions & 0 deletions
119
tests/safeds/data/tabular/containers/_table/test_inverse_transform_table.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
import pytest | ||
from safeds.data.tabular.containers import Table | ||
from safeds.data.tabular.exceptions import TransformerNotFittedError | ||
from safeds.data.tabular.transformation import OneHotEncoder | ||
|
||
|
||
class TestInverseTransformTableOnOneHotEncoder: | ||
@pytest.mark.parametrize( | ||
("table_to_fit", "column_names", "table_to_transform"), | ||
[ | ||
( | ||
Table.from_dict( | ||
{ | ||
"a": [1.0, 0.0, 0.0, 0.0], | ||
"b": ["a", "b", "b", "c"], | ||
"c": [0.0, 0.0, 0.0, 1.0], | ||
}, | ||
), | ||
["b"], | ||
Table.from_dict( | ||
{ | ||
"a": [1.0, 0.0, 0.0, 0.0], | ||
"b": ["a", "b", "b", "c"], | ||
"c": [0.0, 0.0, 0.0, 1.0], | ||
}, | ||
), | ||
), | ||
( | ||
Table.from_dict( | ||
{ | ||
"a": [1.0, 0.0, 0.0, 0.0], | ||
"b": ["a", "b", "b", "c"], | ||
"c": [0.0, 0.0, 0.0, 1.0], | ||
}, | ||
), | ||
["b"], | ||
Table.from_dict( | ||
{ | ||
"c": [0.0, 0.0, 0.0, 1.0], | ||
"b": ["a", "b", "b", "c"], | ||
"a": [1.0, 0.0, 0.0, 0.0], | ||
}, | ||
), | ||
), | ||
( | ||
Table.from_dict( | ||
{ | ||
"a": [1.0, 0.0, 0.0, 0.0], | ||
"b": ["a", "b", "b", "c"], | ||
"bb": ["a", "b", "b", "c"], | ||
}, | ||
), | ||
["b", "bb"], | ||
Table.from_dict( | ||
{ | ||
"a": [1.0, 0.0, 0.0, 0.0], | ||
"b": ["a", "b", "b", "c"], | ||
"bb": ["a", "b", "b", "c"], | ||
}, | ||
), | ||
), | ||
], | ||
ids=[ | ||
"same table to fit and transform", | ||
"different tables to fit and transform", | ||
"one column name is a prefix of another column name", | ||
], | ||
) | ||
def test_should_return_original_table( | ||
self, | ||
table_to_fit: Table, | ||
column_names: list[str], | ||
table_to_transform: Table, | ||
) -> None: | ||
transformer = OneHotEncoder().fit(table_to_fit, column_names) | ||
transformed_table = transformer.transform(table_to_transform) | ||
|
||
result = transformed_table.inverse_transform_table(transformer) | ||
|
||
# This checks whether the columns are in the same order | ||
assert result.column_names == table_to_transform.column_names | ||
# This is subsumed by the next assertion, but we get a better error message | ||
assert result.schema == table_to_transform.schema | ||
assert result == table_to_transform | ||
|
||
def test_should_not_change_transformed_table(self) -> None: | ||
table = Table.from_dict( | ||
{ | ||
"col1": ["a", "b", "b", "c"], | ||
}, | ||
) | ||
|
||
transformer = OneHotEncoder().fit(table, None) | ||
transformed_table = transformer.transform(table) | ||
transformed_table.inverse_transform_table(transformer) | ||
|
||
expected = Table.from_dict( | ||
{ | ||
"col1_a": [1.0, 0.0, 0.0, 0.0], | ||
"col1_b": [0.0, 1.0, 1.0, 0.0], | ||
"col1_c": [0.0, 0.0, 0.0, 1.0], | ||
}, | ||
) | ||
|
||
assert transformed_table == expected | ||
|
||
def test_should_raise_if_not_fitted(self) -> None: | ||
table = Table.from_dict( | ||
{ | ||
"a": [1.0, 0.0, 0.0, 0.0], | ||
"b": [0.0, 1.0, 1.0, 0.0], | ||
"c": [0.0, 0.0, 0.0, 1.0], | ||
}, | ||
) | ||
|
||
transformer = OneHotEncoder() | ||
|
||
with pytest.raises(TransformerNotFittedError): | ||
table.inverse_transform_table(transformer) |
39 changes: 39 additions & 0 deletions
39
tests/safeds/ml/classical/regression/test_elastic_net_regression.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
import pytest | ||
from safeds.data.tabular.containers import Table | ||
from safeds.ml.classical.regression._elastic_net_regression import ElasticNetRegression | ||
|
||
|
||
def test_lasso_ratio_valid() -> None: | ||
training_set = Table.from_dict({"col1": [1, 2, 3, 4], "col2": [1, 2, 3, 4]}) | ||
tagged_training_set = training_set.tag_columns(target_name="col1", feature_names=["col2"]) | ||
lasso_ratio = 0.3 | ||
|
||
elastic_net_regression = ElasticNetRegression(lasso_ratio).fit(tagged_training_set) | ||
assert elastic_net_regression._wrapped_regressor is not None | ||
assert elastic_net_regression._wrapped_regressor.l1_ratio == lasso_ratio | ||
|
||
|
||
def test_lasso_ratio_invalid() -> None: | ||
with pytest.raises(ValueError, match="lasso_ratio must be between 0 and 1."): | ||
ElasticNetRegression(-1) | ||
|
||
|
||
def test_lasso_ratio_zero() -> None: | ||
with pytest.warns( | ||
UserWarning, | ||
match="ElasticNetRegression with lasso_ratio = 0 is essentially RidgeRegression." | ||
" Use RidgeRegression instead for better numerical stability.", | ||
): | ||
ElasticNetRegression(0) | ||
|
||
|
||
def test_lasso_ratio_one() -> None: | ||
with pytest.warns( | ||
UserWarning, | ||
match="ElasticNetRegression with lasso_ratio = 0 is essentially LassoRegression." | ||
" Use LassoRegression instead for better numerical stability.", | ||
): | ||
ElasticNetRegression(1) | ||
|
||
|
||
# (Default parameter is tested in `test_regressor.py`.) |