Skip to content

[ECCV 2024] GVGEN: Text-to-3D Generation with Volumetric Representation

Notifications You must be signed in to change notification settings

SOTAMak1r/GVGEN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GVGEN: Text-to-3D Generation with Volumetric Representation 🧊

arXiv  project page  Hugging Face Spaces 

🔥 Update

  • [2024.10.16] Code for GaussianVolume Fitting is released ! See CPS !
  • [2024.07.04] Code and Models for text-conditional 3D generation are released !
  • [2024.07.04] GVGEN was accepted by ECCV 2024. See you in Milan!

🌿 Introduction

We introduce GVGEN, a novel diffusion-based framework, which is designed to efficiently generate 3D Gaussian representations from text input. We propose two innovative techniques:

  • Structured Volumetric Representation. We first arrange disorganized 3D Gaussian points as a structured form GaussianVolume. This transformation allows the capture of intricate texture details within a volume composed of a fixed number of Gaussians.
  • Coarse-to-fine Generation Pipeline. To simplify the generation of GaussianVolume and empower the model to generate instances with detailed 3D geometry, we propose a coarse-to-fine pipeline. It initially constructs a basic geometric structure, followed by the prediction of complete Gaussian attributes.

🦄 Text-conditional 3D generation

Environment Setup

conda create -n gvgen python=3.8
pip install -r requirements.txt

Then, install the diff-gaussian-rasterization submodule according to the instructions provided by 3DGS

Pretrained Models

Please download models from Hugging Face Spaces, put them in the folder ./ckpts.

Run

After completing all the above instructions, run

python run_text.py --text_input YOUR_TEXT_INPUT

# for example
python run_text.py --text_input "a green truck"

The generated gif and 3DGS will be saved to sample.gif and sample.ply, respectively. The text condition we used during training is derived from Cap3D. We recommend everyone to imitate the style of Cap3D's text and create your own prompts for better generation results.

⚡️ ToDo List

  • Release Code for GaussianVolume fitting

  • Release Code for data preprocessing

  • Release Code for training

License

The majority of this project is licensed under MIT License. Portions of the project are available under separate license of referred projects, detailed in corresponding files.

BibTeX

@article{he2024gvgen,
  title={GVGEN: Text-to-3D Generation with Volumetric Representation},
  author={He, Xianglong and Chen, Junyi and Peng, Sida and Huang, Di and Li, Yangguang and Huang, Xiaoshui and Yuan, Chun and Ouyang, Wanli and He, Tong},
  journal={arXiv preprint arXiv:2403.12957},
  year={2024}
}

About

[ECCV 2024] GVGEN: Text-to-3D Generation with Volumetric Representation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages