Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make inv_mod2k(_vartime) return a CtChoice #416

Merged
merged 4 commits into from
Dec 12, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions src/ct_choice.rs
Original file line number Diff line number Diff line change
Expand Up @@ -158,6 +158,12 @@ impl From<CtChoice> for bool {
}
}

impl PartialEq for CtChoice {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}

#[cfg(test)]
mod tests {
use super::CtChoice;
Expand Down
11 changes: 4 additions & 7 deletions src/modular/boxed_residue.rs
Original file line number Diff line number Diff line change
Expand Up @@ -103,12 +103,9 @@ impl BoxedResidueParams {

/// Common functionality of `new` and `new_vartime`.
fn new_inner(modulus: BoxedUint, r: BoxedUint, r2: BoxedUint) -> CtOption<Self> {
let is_odd = modulus.is_odd();

// Since we are calculating the inverse modulo (Word::MAX+1),
// we can take the modulo right away and calculate the inverse of the first limb only.
let modulus_lo = BoxedUint::from(modulus.limbs.get(0).copied().unwrap_or_default());
let mod_neg_inv = Limb(Word::MIN.wrapping_sub(modulus_lo.inv_mod2k(Word::BITS).limbs[0].0));
// If the inverse exists, it means the modulus is odd.
let (inv_mod_limb, modulus_is_odd) = modulus.inv_mod2k(Word::BITS);
let mod_neg_inv = Limb(Word::MIN.wrapping_sub(inv_mod_limb.limbs[0].0));
let r3 = montgomery_reduction_boxed(&mut r2.square(), &modulus, mod_neg_inv);

let params = Self {
Expand All @@ -119,7 +116,7 @@ impl BoxedResidueParams {
mod_neg_inv,
};

CtOption::new(params, is_odd)
CtOption::new(params, modulus_is_odd)
}

/// Modulus value.
Expand Down
12 changes: 5 additions & 7 deletions src/modular/dyn_residue.rs
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ use super::{
residue::{Residue, ResidueParams},
Retrieve,
};
use crate::{Integer, Limb, Uint, Word};
use crate::{Limb, Uint, Word};
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};

/// Parameters to efficiently go to/from the Montgomery form for an odd modulus provided at runtime.
Expand All @@ -40,11 +40,9 @@ impl<const LIMBS: usize> DynResidueParams<LIMBS> {
let r = Uint::MAX.const_rem(modulus).0.wrapping_add(&Uint::ONE);
let r2 = Uint::const_rem_wide(r.square_wide(), modulus).0;

// Since we are calculating the inverse modulo (Word::MAX+1),
// we can take the modulo right away and calculate the inverse of the first limb only.
let modulus_lo = Uint::<1>::from_words([modulus.limbs[0].0]);
let mod_neg_inv =
Limb(Word::MIN.wrapping_sub(modulus_lo.inv_mod2k_vartime(Word::BITS).limbs[0].0));
// If the inverse does not exist, it means the modulus is odd.
let (inv_mod_limb, modulus_is_odd) = modulus.inv_mod2k_vartime(Word::BITS);
let mod_neg_inv = Limb(Word::MIN.wrapping_sub(inv_mod_limb.limbs[0].0));

let r3 = montgomery_reduction(&r2.square_wide(), modulus, mod_neg_inv);

Expand All @@ -56,7 +54,7 @@ impl<const LIMBS: usize> DynResidueParams<LIMBS> {
mod_neg_inv,
};

CtOption::new(params, modulus.is_odd())
CtOption::new(params, modulus_is_odd.into())
}

/// Returns the modulus which was used to initialize these parameters.
Expand Down
1 change: 1 addition & 0 deletions src/modular/residue/macros.rs
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ macro_rules! impl_modulus {
$crate::Word::MIN.wrapping_sub(
Self::MODULUS
.inv_mod2k_vartime($crate::Word::BITS)
.0
.as_limbs()[0]
.0,
),
Expand Down
52 changes: 28 additions & 24 deletions src/uint/boxed/inv_mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -16,16 +16,14 @@ impl BoxedUint {
// Decompose `self` into RNS with moduli `2^k` and `s` and calculate the inverses.
// Using the fact that `(z^{-1} mod (m1 * m2)) mod m1 == z^{-1} mod m1`
let (a, a_is_some) = self.inv_odd_mod(&s);
let b = self.inv_mod2k(k);
// inverse modulo 2^k exists either if `k` is 0 or if `self` is odd.
let b_is_some = k.ct_eq(&0) | self.is_odd();
let (b, b_is_some) = self.inv_mod2k(k);

// Restore from RNS:
// self^{-1} = a mod s = b mod 2^k
// => self^{-1} = a + s * ((b - a) * s^(-1) mod 2^k)
// (essentially one step of the Garner's algorithm for recovery from RNS).

let m_odd_inv = s.inv_mod2k(k); // `s` is odd, so this always exists
let (m_odd_inv, _is_some) = s.inv_mod2k(k); // `s` is odd, so this always exists

// This part is mod 2^k
let mask = Self::one().shl(k).wrapping_sub(&Self::one());
Expand All @@ -39,14 +37,16 @@ impl BoxedUint {

/// Computes 1/`self` mod `2^k`.
///
/// Conditions: `self` < 2^k and `self` must be odd
pub(crate) fn inv_mod2k(&self, k: u32) -> Self {
// This is the same algorithm as in `inv_mod2k_vartime()`,
// but made constant-time w.r.t `k` as well.

/// If the inverse does not exist (`k > 0` and `self` is even),
/// returns `CtChoice::FALSE` as the second element of the tuple,
/// otherwise returns `CtChoice::TRUE`.
pub(crate) fn inv_mod2k(&self, k: u32) -> (Self, Choice) {
let mut x = Self::zero_with_precision(self.bits_precision()); // keeps `x` during iterations
let mut b = Self::one_with_precision(self.bits_precision()); // keeps `b_i` during iterations

// The inverse exists either if `k` is 0 or if `self` is odd.
let is_some = k.ct_eq(&0) | self.is_odd();

for i in 0..self.bits_precision() {
// Only iterations for i = 0..k need to change `x`,
// the rest are dummy ones performed for the sake of constant-timeness.
Expand All @@ -64,7 +64,7 @@ impl BoxedUint {
x.set_bit(i, x_i_choice);
}

x
(x, is_some)
}

/// Computes the multiplicative inverse of `self` mod `modulus`, where `modulus` is odd.
Expand All @@ -80,8 +80,8 @@ impl BoxedUint {
/// of `self` and `modulus`, respectively.
///
/// (the inversion speed will be proportional to `bits + modulus_bits`).
/// The second element of the tuple is the truthy value if an inverse exists,
/// otherwise it is a falsy value.
/// The second element of the tuple is the truthy value
/// if `modulus` is odd and an inverse exists, otherwise it is a falsy value.
///
/// **Note:** variable time in `bits` and `modulus_bits`.
///
Expand All @@ -90,7 +90,6 @@ impl BoxedUint {
debug_assert_eq!(self.bits_precision(), modulus.bits_precision());

let bits_precision = self.bits_precision();
debug_assert!(bool::from(modulus.is_odd()));

let mut a = self.clone();
let mut u = Self::one_with_precision(bits_precision);
Expand All @@ -100,13 +99,16 @@ impl BoxedUint {
// `bit_size` can be anything >= `self.bits()` + `modulus.bits()`, setting to the minimum.
let bit_size = bits + modulus_bits;

let mut m1hp = modulus.clone();
let (m1hp_new, carry) = m1hp.shr1_with_overflow();
debug_assert!(bool::from(carry));
m1hp = m1hp_new.wrapping_add(&Self::one_with_precision(bits_precision));
let m1hp = modulus
.shr1()
.wrapping_add(&Self::one_with_precision(bits_precision));

let modulus_is_odd = modulus.is_odd();

for _ in 0..bit_size {
debug_assert!(bool::from(b.is_odd()));
// A sanity check that `b` stays odd. Only matters if `modulus` was odd to begin with,
// otherwise this whole thing produces nonsense anyway.
debug_assert!(bool::from(!modulus_is_odd | b.is_odd()));

let self_odd = a.is_odd();

Expand All @@ -125,18 +127,18 @@ impl BoxedUint {
debug_assert!(bool::from(cy.ct_eq(&cyy)));

let (new_a, overflow) = a.shr1_with_overflow();
debug_assert!(!bool::from(overflow));
debug_assert!(bool::from(!modulus_is_odd | !overflow));
let (mut new_u, cy) = new_u.shr1_with_overflow();
let cy = new_u.conditional_adc_assign(&m1hp, cy);
debug_assert!(!bool::from(cy));
debug_assert!(bool::from(!modulus_is_odd | !cy));

a = new_a;
u = new_u;
v = new_v;
}

debug_assert!(bool::from(a.is_zero()));
(v, b.is_one())
debug_assert!(bool::from(!modulus_is_odd | a.is_zero()));
(v, b.is_one() & modulus_is_odd)
}
}

Expand All @@ -157,8 +159,9 @@ mod tests {
256,
)
.unwrap();
let a = v.inv_mod2k(256);
let (a, is_some) = v.inv_mod2k(256);
assert_eq!(e, a);
assert!(bool::from(is_some));

let v = BoxedUint::from_be_slice(
&hex!("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141"),
Expand All @@ -170,7 +173,8 @@ mod tests {
256,
)
.unwrap();
let a = v.inv_mod2k(256);
let (a, is_some) = v.inv_mod2k(256);
assert_eq!(e, a);
assert!(bool::from(is_some));
}
}
Loading