Skip to content

Commit

Permalink
Auto merge of rust-lang#122582 - scottmcm:swap-intrinsic-v2, r=oli-obk
Browse files Browse the repository at this point in the history
Let codegen decide when to `mem::swap` with immediates

Making `libcore` decide this is silly; the backend has so much better information about when it's a good idea.

Thus this PR introduces a new `typed_swap` intrinsic with a fallback body, and replaces that fallback implementation when swapping immediates or scalar pairs.

r? oli-obk

Replaces rust-lang#111744, and means we'll never need more libs PRs like rust-lang#111803 or rust-lang#107140
  • Loading branch information
bors authored and RenjiSann committed Mar 25, 2024
2 parents ab92699 + 75d2e5b commit 66b9b2c
Show file tree
Hide file tree
Showing 18 changed files with 370 additions and 70 deletions.
24 changes: 24 additions & 0 deletions compiler/rustc_codegen_ssa/src/mir/intrinsic.rs
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ use crate::traits::*;
use crate::MemFlags;

use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_session::config::OptLevel;
use rustc_span::{sym, Span};
use rustc_target::abi::{
call::{FnAbi, PassMode},
Expand Down Expand Up @@ -75,6 +76,29 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
let name = bx.tcx().item_name(def_id);
let name_str = name.as_str();

// If we're swapping something that's *not* an `OperandValue::Ref`,
// then we can do it directly and avoid the alloca.
// Otherwise, we'll let the fallback MIR body take care of it.
if let sym::typed_swap = name {
let pointee_ty = fn_args.type_at(0);
let pointee_layout = bx.layout_of(pointee_ty);
if !bx.is_backend_ref(pointee_layout)
// But if we're not going to optimize, trying to use the fallback
// body just makes things worse, so don't bother.
|| bx.sess().opts.optimize == OptLevel::No
// NOTE(eddyb) SPIR-V's Logical addressing model doesn't allow for arbitrary
// reinterpretation of values as (chunkable) byte arrays, and the loop in the
// block optimization in `ptr::swap_nonoverlapping` is hard to rewrite back
// into the (unoptimized) direct swapping implementation, so we disable it.
|| bx.sess().target.arch == "spirv"
{
let x_place = PlaceRef::new_sized(args[0].immediate(), pointee_layout);
let y_place = PlaceRef::new_sized(args[1].immediate(), pointee_layout);
bx.typed_place_swap(x_place, y_place);
return Ok(());
}
}

let llret_ty = bx.backend_type(bx.layout_of(ret_ty));
let result = PlaceRef::new_sized(llresult, fn_abi.ret.layout);

Expand Down
54 changes: 52 additions & 2 deletions compiler/rustc_codegen_ssa/src/traits/builder.rs
Original file line number Diff line number Diff line change
@@ -1,22 +1,24 @@
use super::abi::AbiBuilderMethods;
use super::asm::AsmBuilderMethods;
use super::consts::ConstMethods;
use super::coverageinfo::CoverageInfoBuilderMethods;
use super::debuginfo::DebugInfoBuilderMethods;
use super::intrinsic::IntrinsicCallMethods;
use super::misc::MiscMethods;
use super::type_::{ArgAbiMethods, BaseTypeMethods};
use super::type_::{ArgAbiMethods, BaseTypeMethods, LayoutTypeMethods};
use super::{HasCodegen, StaticBuilderMethods};

use crate::common::{
AtomicOrdering, AtomicRmwBinOp, IntPredicate, RealPredicate, SynchronizationScope, TypeKind,
};
use crate::mir::operand::OperandRef;
use crate::mir::operand::{OperandRef, OperandValue};
use crate::mir::place::PlaceRef;
use crate::MemFlags;

use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
use rustc_middle::ty::layout::{HasParamEnv, TyAndLayout};
use rustc_middle::ty::Ty;
use rustc_session::config::OptLevel;
use rustc_span::Span;
use rustc_target::abi::call::FnAbi;
use rustc_target::abi::{Abi, Align, Scalar, Size, WrappingRange};
Expand Down Expand Up @@ -267,6 +269,54 @@ pub trait BuilderMethods<'a, 'tcx>:
flags: MemFlags,
);

/// *Typed* copy for non-overlapping places.
///
/// Has a default implementation in terms of `memcpy`, but specific backends
/// can override to do something smarter if possible.
///
/// (For example, typed load-stores with alias metadata.)
fn typed_place_copy(
&mut self,
dst: PlaceRef<'tcx, Self::Value>,
src: PlaceRef<'tcx, Self::Value>,
) {
debug_assert!(src.llextra.is_none());
debug_assert!(dst.llextra.is_none());
debug_assert_eq!(dst.layout.size, src.layout.size);
if self.sess().opts.optimize == OptLevel::No && self.is_backend_immediate(dst.layout) {
// If we're not optimizing, the aliasing information from `memcpy`
// isn't useful, so just load-store the value for smaller code.
let temp = self.load_operand(src);
temp.val.store(self, dst);
} else if !dst.layout.is_zst() {
let bytes = self.const_usize(dst.layout.size.bytes());
self.memcpy(dst.llval, dst.align, src.llval, src.align, bytes, MemFlags::empty());
}
}

/// *Typed* swap for non-overlapping places.
///
/// Avoids `alloca`s for Immediates and ScalarPairs.
///
/// FIXME: Maybe do something smarter for Ref types too?
/// For now, the `typed_swap` intrinsic just doesn't call this for those
/// cases (in non-debug), preferring the fallback body instead.
fn typed_place_swap(
&mut self,
left: PlaceRef<'tcx, Self::Value>,
right: PlaceRef<'tcx, Self::Value>,
) {
let mut temp = self.load_operand(left);
if let OperandValue::Ref(..) = temp.val {
// The SSA value isn't stand-alone, so we need to copy it elsewhere
let alloca = PlaceRef::alloca(self, left.layout);
self.typed_place_copy(alloca, left);
temp = self.load_operand(alloca);
}
self.typed_place_copy(left, right);
temp.val.store(self, right);
}

fn select(
&mut self,
cond: Self::Value,
Expand Down
14 changes: 14 additions & 0 deletions compiler/rustc_codegen_ssa/src/traits/type_.rs
Original file line number Diff line number Diff line change
Expand Up @@ -120,6 +120,20 @@ pub trait LayoutTypeMethods<'tcx>: Backend<'tcx> {
immediate: bool,
) -> Self::Type;

/// A type that produces an [`OperandValue::Ref`] when loaded.
///
/// AKA one that's not a ZST, not `is_backend_immediate`, and
/// not `is_backend_scalar_pair`. For such a type, a
/// [`load_operand`] doesn't actually `load` anything.
///
/// [`OperandValue::Ref`]: crate::mir::operand::OperandValue::Ref
/// [`load_operand`]: super::BuilderMethods::load_operand
fn is_backend_ref(&self, layout: TyAndLayout<'tcx>) -> bool {
!(layout.is_zst()
|| self.is_backend_immediate(layout)
|| self.is_backend_scalar_pair(layout))
}

/// A type that can be used in a [`super::BuilderMethods::load`] +
/// [`super::BuilderMethods::store`] pair to implement a *typed* copy,
/// such as a MIR `*_0 = *_1`.
Expand Down
25 changes: 23 additions & 2 deletions compiler/rustc_const_eval/src/interpret/intrinsics.rs
Original file line number Diff line number Diff line change
Expand Up @@ -21,8 +21,8 @@ use rustc_span::symbol::{sym, Symbol};
use rustc_target::abi::Size;

use super::{
util::ensure_monomorphic_enough, CheckInAllocMsg, ImmTy, InterpCx, MPlaceTy, Machine, OpTy,
Pointer,
memory::MemoryKind, util::ensure_monomorphic_enough, CheckInAllocMsg, ImmTy, InterpCx,
MPlaceTy, Machine, OpTy, Pointer,
};

use crate::fluent_generated as fluent;
Expand Down Expand Up @@ -414,6 +414,9 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
let result = self.raw_eq_intrinsic(&args[0], &args[1])?;
self.write_scalar(result, dest)?;
}
sym::typed_swap => {
self.typed_swap_intrinsic(&args[0], &args[1])?;
}

sym::vtable_size => {
let ptr = self.read_pointer(&args[0])?;
Expand Down Expand Up @@ -607,6 +610,24 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
self.mem_copy(src, dst, size, nonoverlapping)
}

/// Does a *typed* swap of `*left` and `*right`.
fn typed_swap_intrinsic(
&mut self,
left: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
right: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
) -> InterpResult<'tcx> {
let left = self.deref_pointer(left)?;
let right = self.deref_pointer(right)?;
debug_assert_eq!(left.layout, right.layout);
let kind = MemoryKind::Stack;
let temp = self.allocate(left.layout, kind)?;
self.copy_op(&left, &temp)?;
self.copy_op(&right, &left)?;
self.copy_op(&temp, &right)?;
self.deallocate_ptr(temp.ptr(), None, kind)?;
Ok(())
}

pub(crate) fn write_bytes_intrinsic(
&mut self,
dst: &OpTy<'tcx, <M as Machine<'mir, 'tcx>>::Provenance>,
Expand Down
2 changes: 2 additions & 0 deletions compiler/rustc_hir_analysis/src/check/intrinsic.rs
Original file line number Diff line number Diff line change
Expand Up @@ -484,6 +484,8 @@ pub fn check_intrinsic_type(
(1, 0, vec![Ty::new_mut_ptr(tcx, param(0)), param(0)], Ty::new_unit(tcx))
}

sym::typed_swap => (1, 1, vec![Ty::new_mut_ptr(tcx, param(0)); 2], Ty::new_unit(tcx)),

sym::discriminant_value => {
let assoc_items = tcx.associated_item_def_ids(
tcx.require_lang_item(hir::LangItem::DiscriminantKind, None),
Expand Down
1 change: 1 addition & 0 deletions compiler/rustc_span/src/symbol.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1836,6 +1836,7 @@ symbols! {
type_macros,
type_name,
type_privacy_lints,
typed_swap,
u128,
u128_legacy_const_max,
u128_legacy_const_min,
Expand Down
22 changes: 22 additions & 0 deletions library/core/src/intrinsics.rs
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@
use crate::marker::DiscriminantKind;
use crate::marker::Tuple;
use crate::mem::align_of;
use crate::ptr;

pub mod mir;
pub mod simd;
Expand Down Expand Up @@ -2638,6 +2639,27 @@ pub const fn is_val_statically_known<T: Copy>(_arg: T) -> bool {
false
}

/// Non-overlapping *typed* swap of a single value.
///
/// The codegen backends will replace this with a better implementation when
/// `T` is a simple type that can be loaded and stored as an immediate.
///
/// The stabilized form of this intrinsic is [`crate::mem::swap`].
///
/// # Safety
///
/// `x` and `y` are readable and writable as `T`, and non-overlapping.
#[rustc_nounwind]
#[inline]
#[cfg_attr(not(bootstrap), rustc_intrinsic)]
// This has fallback `const fn` MIR, so shouldn't need stability, see #122652
#[rustc_const_unstable(feature = "const_typed_swap", issue = "none")]
pub const unsafe fn typed_swap<T>(x: *mut T, y: *mut T) {
// SAFETY: The caller provided single non-overlapping items behind
// pointers, so swapping them with `count: 1` is fine.
unsafe { ptr::swap_nonoverlapping(x, y, 1) };
}

/// Returns whether we should check for library UB. This evaluate to the value of `cfg!(debug_assertions)`
/// during monomorphization.
///
Expand Down
1 change: 1 addition & 0 deletions library/core/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -170,6 +170,7 @@
#![feature(const_try)]
#![feature(const_type_id)]
#![feature(const_type_name)]
#![feature(const_typed_swap)]
#![feature(const_unicode_case_lookup)]
#![feature(const_unsafecell_get_mut)]
#![feature(const_waker)]
Expand Down
60 changes: 3 additions & 57 deletions library/core/src/mem/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -726,63 +726,9 @@ pub unsafe fn uninitialized<T>() -> T {
#[rustc_const_unstable(feature = "const_swap", issue = "83163")]
#[rustc_diagnostic_item = "mem_swap"]
pub const fn swap<T>(x: &mut T, y: &mut T) {
// NOTE(eddyb) SPIR-V's Logical addressing model doesn't allow for arbitrary
// reinterpretation of values as (chunkable) byte arrays, and the loop in the
// block optimization in `swap_slice` is hard to rewrite back
// into the (unoptimized) direct swapping implementation, so we disable it.
#[cfg(not(any(target_arch = "spirv")))]
{
// For types that are larger multiples of their alignment, the simple way
// tends to copy the whole thing to stack rather than doing it one part
// at a time, so instead treat them as one-element slices and piggy-back
// the slice optimizations that will split up the swaps.
if const { size_of::<T>() / align_of::<T>() > 2 } {
// SAFETY: exclusive references always point to one non-overlapping
// element and are non-null and properly aligned.
return unsafe { ptr::swap_nonoverlapping(x, y, 1) };
}
}

// If a scalar consists of just a small number of alignment units, let
// the codegen just swap those pieces directly, as it's likely just a
// few instructions and anything else is probably overcomplicated.
//
// Most importantly, this covers primitives and simd types that tend to
// have size=align where doing anything else can be a pessimization.
// (This will also be used for ZSTs, though any solution works for them.)
swap_simple(x, y);
}

/// Same as [`swap`] semantically, but always uses the simple implementation.
///
/// Used elsewhere in `mem` and `ptr` at the bottom layer of calls.
#[rustc_const_unstable(feature = "const_swap", issue = "83163")]
#[inline]
pub(crate) const fn swap_simple<T>(x: &mut T, y: &mut T) {
// We arrange for this to typically be called with small types,
// so this reads-and-writes approach is actually better than using
// copy_nonoverlapping as it easily puts things in LLVM registers
// directly and doesn't end up inlining allocas.
// And LLVM actually optimizes it to 3×memcpy if called with
// a type larger than it's willing to keep in a register.
// Having typed reads and writes in MIR here is also good as
// it lets Miri and CTFE understand them better, including things
// like enforcing type validity for them.
// Importantly, read+copy_nonoverlapping+write introduces confusing
// asymmetry to the behaviour where one value went through read+write
// whereas the other was copied over by the intrinsic (see #94371).
// Furthermore, using only read+write here benefits limited backends
// such as SPIR-V that work on an underlying *typed* view of memory,
// and thus have trouble with Rust's untyped memory operations.

// SAFETY: exclusive references are always valid to read/write,
// including being aligned, and nothing here panics so it's drop-safe.
unsafe {
let a = ptr::read(x);
let b = ptr::read(y);
ptr::write(x, b);
ptr::write(y, a);
}
// SAFETY: `&mut` guarantees these are typed readable and writable
// as well as non-overlapping.
unsafe { intrinsics::typed_swap(x, y) }
}

/// Replaces `dest` with the default value of `T`, returning the previous `dest` value.
Expand Down
21 changes: 18 additions & 3 deletions library/core/src/ptr/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1062,11 +1062,26 @@ const unsafe fn swap_nonoverlapping_simple_untyped<T>(x: *mut T, y: *mut T, coun
let mut i = 0;
while i < count {
// SAFETY: By precondition, `i` is in-bounds because it's below `n`
let x = unsafe { &mut *x.add(i) };
let x = unsafe { x.add(i) };
// SAFETY: By precondition, `i` is in-bounds because it's below `n`
// and it's distinct from `x` since the ranges are non-overlapping
let y = unsafe { &mut *y.add(i) };
mem::swap_simple::<MaybeUninit<T>>(x, y);
let y = unsafe { y.add(i) };

// If we end up here, it's because we're using a simple type -- like
// a small power-of-two-sized thing -- or a special type with particularly
// large alignment, particularly SIMD types.
// Thus we're fine just reading-and-writing it, as either it's small
// and that works well anyway or it's special and the type's author
// presumably wanted things to be done in the larger chunk.

// SAFETY: we're only ever given pointers that are valid to read/write,
// including being aligned, and nothing here panics so it's drop-safe.
unsafe {
let a: MaybeUninit<T> = read(x);
let b: MaybeUninit<T> = read(y);
write(x, b);
write(y, a);
}

i += 1;
}
Expand Down
19 changes: 19 additions & 0 deletions src/tools/miri/tests/fail/intrinsics/typed-swap-invalid-array.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
#![feature(core_intrinsics)]
#![feature(rustc_attrs)]

use std::intrinsics::typed_swap;
use std::ptr::addr_of_mut;

fn invalid_array() {
let mut a = [1_u8; 100];
let mut b = [2_u8; 100];
unsafe {
let a = addr_of_mut!(a).cast::<[bool; 100]>();
let b = addr_of_mut!(b).cast::<[bool; 100]>();
typed_swap(a, b); //~ERROR: constructing invalid value
}
}

fn main() {
invalid_array();
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
error: Undefined Behavior: constructing invalid value at [0]: encountered 0x02, but expected a boolean
--> $DIR/typed-swap-invalid-array.rs:LL:CC
|
LL | typed_swap(a, b);
| ^^^^^^^^^^^^^^^^ constructing invalid value at [0]: encountered 0x02, but expected a boolean
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information
= note: BACKTRACE:
= note: inside `invalid_array` at $DIR/typed-swap-invalid-array.rs:LL:CC
note: inside `main`
--> $DIR/typed-swap-invalid-array.rs:LL:CC
|
LL | invalid_array();
| ^^^^^^^^^^^^^^^

note: some details are omitted, run with `MIRIFLAGS=-Zmiri-backtrace=full` for a verbose backtrace

error: aborting due to 1 previous error

Loading

0 comments on commit 66b9b2c

Please sign in to comment.