Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

added uni_multi_alt #3

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
47 changes: 47 additions & 0 deletions masud_sir_part/uni_multi_alt.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
import numpy as np
import matplotlib.pyplot as plt

# Generate random samples from normal distributions
sample_size = 200
mean_diastolic = 80
std_diastolic = 20
mean_sample = 100
std_sample = 20

random_sample_diastolic = np.random.normal(mean_diastolic, std_diastolic, sample_size)
random_sample_sample = np.random.normal(mean_sample, std_sample, sample_size)

# Plot histogram of the diastolic blood pressure distribution
plt.hist(random_sample_diastolic, bins=20, density=True, alpha=0.6, color='blue', label='Diastolic Blood Pressure')
plt.xlabel('Blood Pressure')
plt.ylabel('Density')
plt.title('Histogram of Diastolic Blood Pressure Distribution')
plt.legend()
plt.show()

# Plot histogram of the sample distribution
plt.hist(random_sample_sample, bins=20, density=True, alpha=0.6, color='orange', label='Sample')
plt.xlabel('Blood Pressure')
plt.ylabel('Density')
plt.title('Histogram of Sample Blood Pressure Distribution')
plt.legend()
plt.show()

# Plot unimodal density curves
x = np.linspace(min(random_sample_diastolic), max(random_sample_sample), 200)
unimodal_curve_diastolic = (1 / (std_diastolic * np.sqrt(2 * np.pi))) * np.exp(-((x - mean_diastolic) ** 2) / (2 * std_diastolic ** 2))
unimodal_curve_sample = (1 / (std_sample * np.sqrt(2 * np.pi))) * np.exp(-((x - mean_sample) ** 2) / (2 * std_sample ** 2))

# Plot the multimodal density curve
mean2 = 80
std2 = 20
multimodal_curve = (1 / (std_diastolic * np.sqrt(2 * np.pi))) * np.exp(-((x - mean_diastolic) ** 2) / (2 * std_diastolic ** 2)) + (1 / (std2 * np.sqrt(2 * np.pi))) * np.exp(-((x - mean2) ** 2) / (2 * std2 ** 2))

plt.plot(x, unimodal_curve_diastolic, label='Diastolic Unimodal')
plt.plot(x, unimodal_curve_sample, label='Sample Unimodal')
plt.plot(x, multimodal_curve, label='Multimodal')
plt.xlabel('Blood Pressure')
plt.ylabel('Density')
plt.title('Density Curves of Blood Pressure Distributions')
plt.legend()
plt.show()