Implementing different approaches for recommendation systems
run: python cf.py
Returns the RMSE and MAE loss metrics on test data using three different approaches of collaborative filtering namely:
- user-user filtering
- item-item filtering
- baseline approach
run: python svd.py
Performs Singular Value Decomposition on the given utility matrix and report the reconstruction error (RMSE and MAE loss) at the specified energy.
run: python cur.py
Similar to SVD, perform decomposition and reports reconstruction error for the specified r
value.
r
is the parameter which specifies the number of columns and rows in C and R matrix respectively in CUR.
run: python main.py
Predicts user-movie rating using the latent factor model. Implemented using Stochastic Gradient Descent learns the latent (hidden) factors for each user and movie and along with baseline approximation computes the prediction.
alpha (learning rate) = 0.01
beta (regularisation coefficient) = 0.05
epochs = 50
Latent Factors | RMSE (test) | MAE (test) |
---|---|---|
10 | 0.836 | 0.654 |
20 | 0.840 | 0.657 |
50 | 0.829 | 0.649 |
100 | 0.833 | 0.653 |
CF Approach | RMSE (test) | MAE (test) |
---|---|---|
Baseline | 0.904 | 0.724 |
user-user filtering | 1.147 | 0.831 |
item-item filtering | 0.921 | 0.730 |
Energy | RMSE (test) | MAE (test) |
---|---|---|
100 | 0 | 0 |
90 | 0.243 | 0.132 |
r | RMSE (test) | MAE (test) |
---|---|---|
3000 | 0.615 | 0.205 |
2000 | 2.109 | 0.276 |