Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(brain): Add ProxyBrain integration #2536

Merged
merged 1 commit into from
May 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
97 changes: 97 additions & 0 deletions backend/modules/brain/integrations/Proxy/Brain.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
import json
from typing import AsyncIterable
from uuid import UUID

from langchain_community.chat_models import ChatLiteLLM
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from logger import get_logger
from modules.brain.knowledge_brain_qa import KnowledgeBrainQA
from modules.chat.dto.chats import ChatQuestion
from modules.chat.dto.outputs import GetChatHistoryOutput
from modules.chat.service.chat_service import ChatService

logger = get_logger(__name__)

chat_service = ChatService()


class ProxyBrain(KnowledgeBrainQA):
"""This is the Proxy brain class.

Args:
KnowledgeBrainQA (_type_): A brain that store the knowledge internaly
"""

def __init__(
self,
**kwargs,
):
super().__init__(
**kwargs,
)

def get_chain(self):

prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are Quivr. You are an assistant. {custom_personality}",
),
MessagesPlaceholder(variable_name="chat_history"),
("human", "{question}"),
]
)

chain = prompt | ChatLiteLLM(model=self.model, max_tokens=self.max_tokens)

return chain

async def generate_stream(
self, chat_id: UUID, question: ChatQuestion, save_answer: bool = True
) -> AsyncIterable:
conversational_qa_chain = self.get_chain()
transformed_history, streamed_chat_history = (
self.initialize_streamed_chat_history(chat_id, question)
)
response_tokens = []

async for chunk in conversational_qa_chain.astream(
{
"question": question.question,
"chat_history": transformed_history,
"custom_personality": (
self.prompt_to_use.content if self.prompt_to_use else None
),
}
):
response_tokens.append(chunk.content)
streamed_chat_history.assistant = chunk.content
yield f"data: {json.dumps(streamed_chat_history.dict())}"

self.save_answer(question, response_tokens, streamed_chat_history, save_answer)

def generate_answer(
self, chat_id: UUID, question: ChatQuestion, save_answer: bool = True
) -> GetChatHistoryOutput:
conversational_qa_chain = self.get_chain()
transformed_history, streamed_chat_history = (
self.initialize_streamed_chat_history(chat_id, question)
)
model_response = conversational_qa_chain.invoke(
{
"question": question.question,
"chat_history": transformed_history,
"custom_personality": (
self.prompt_to_use.content if self.prompt_to_use else None
),
}
)

answer = model_response.content

return self.save_non_streaming_answer(
chat_id=chat_id,
question=question,
answer=answer,
)
Empty file.
2 changes: 2 additions & 0 deletions backend/modules/chat/controller/chat/brainful_chat.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
from modules.brain.integrations.Big.Brain import BigBrain
from modules.brain.integrations.GPT4.Brain import GPT4Brain
from modules.brain.integrations.Notion.Brain import NotionBrain
from modules.brain.integrations.Proxy.Brain import ProxyBrain
from modules.brain.integrations.SQL.Brain import SQLBrain
from modules.brain.knowledge_brain_qa import KnowledgeBrainQA
from modules.brain.service.api_brain_definition_service import ApiBrainDefinitionService
Expand Down Expand Up @@ -41,6 +42,7 @@
"sql": SQLBrain,
"big": BigBrain,
"doc": KnowledgeBrainQA,
"proxy": ProxyBrain,
}

brain_service = BrainService()
Expand Down