Skip to content

Quantum-Software-Development/7-DataMining-Regression-Techniques-Data-Integration

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

26 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation


[πŸ‡§πŸ‡· PortuguΓͺs] [πŸ‡ΊπŸ‡Έ English]



7- Data Mining / Regression Techniques with Data Integration



Institution: Pontifical Catholic University of SΓ£o Paulo (PUC-SP)
School: Faculty of Interdisciplinary Studies
Program: Humanistic AI and Data Science Semester: 2nd Semester 2025
Professor: Professor Doctor in Mathematics Daniel Rodrigues da Silva



Sponsor Quantum Software Development






Important

⚠️ Heads Up







🎢 Prelude Suite no.1 (J. S. Bach) - Sound Design Remix
Statistical.Measures.and.Banking.Sector.Analysis.at.Bovespa.mp4

πŸ“Ί For better resolution, watch the video on YouTube.



Tip

This repository is a review of the Statistics course from the undergraduate program Humanities, AI and Data Science at PUC-SP.

☞ Access Data Mining Main Repository



This repository covers fundamental concepts and practical techniques in Data Mining focused on clustering (grouping by similarity), various types of regression for modeling data trends, and the crucial steps for data integration and preprocessing. Each section includes theoretical explanations, use case examples, mathematical formulations using LaTeX, and Python code snippets to assist practical understanding.















1. Castro, L. N. & Ferrari, D. G. (2016). Introduction to Data Mining: Basic Concepts, Algorithms, and Applications. Saraiva.

2. Ferreira, A. C. P. L. et al. (2024). Artificial Intelligence – A Machine Learning Approach. 2nd Ed. LTC.

3. Larson & Farber (2015). Applied Statistics. Pearson.





πŸ›ΈΰΉ‹ My Contacts Hub





────────────── πŸ”­β‹† ──────────────

➣➒➀ Back to Top

Copyright 2025 Quantum Software Development. Code released under the MIT License license.

About

7-Data Minining - Regression Techniques with Data Integration

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Sponsor this project