A powerful multi-agent system for adaptive AI reasoning and automation. AgenticFleet combines Chainlit's interactive interface with AutoGen's multi-agent capabilities to create a flexible, powerful AI assistant platform.
# Pull the latest image
docker pull qredence/agenticfleet:latest
# Run with minimum required configuration
docker run -d -p 8001:8001 qredence/agenticfleet:latest
# Or run with additional configuration
docker run -d -p 8001:8001 \
-e AZURE_OPENAI_API_KEY=your_key \
-e AZURE_OPENAI_ENDPOINT=your_endpoint \
-e AZURE_OPENAI_DEPLOYMENT=your_deployment \
-e AZURE_OPENAI_MODEL=your_model \
-e USE_OAUTH=true \
-e OAUTH_GITHUB_CLIENT_ID=your_client_id \
-e OAUTH_GITHUB_CLIENT_SECRET=your_client_secret \
qredence/agenticfleet:latest
# Run without OAuth
docker run -d -p 8001:8001 \
-e AZURE_OPENAI_API_KEY=your_key \
-e AZURE_OPENAI_ENDPOINT=your_endpoint \
-e USE_OAUTH=false \
qredence/agenticfleet:latest
AgenticFleet operates through a coordinated team of specialized agents:
-
WebSurfer: Expert web navigation agent
- Extracts information from web pages
- Captures and processes screenshots
- Provides structured summaries of findings
-
FileSurfer: File system specialist
- Searches and analyzes workspace files
- Manages file operations efficiently
- Extracts relevant information from documents
-
Coder: Development expert
- Generates and reviews code
- Implements solutions
- Maintains code quality
-
Executor: Code execution specialist
- Safely runs code in isolated workspace
- Monitors execution and handles timeouts
- Provides detailed execution feedback
Install providers using pip:
# Install base package
pip install agentic-fleet
# Install all model providers
pip install "agentic-fleet[models]"
# Or install individual providers
pip install "google-cloud-aiplatform>=1.38.0" "google-generativeai>=0.3.0" # For Gemini
pip install "deepseek>=0.1.0" # For DeepSeek
pip install "ollama>=0.1.5" # For Ollama
from agentic_fleet.models import ModelFactory, ModelProvider
from autogen_core.models import UserMessage
# Create Azure OpenAI client
azure_client = ModelFactory.create(
ModelProvider.AZURE_OPENAI,
deployment="your-deployment",
model="gpt-4",
endpoint="your-endpoint"
)
# Create Gemini client
gemini_client = ModelFactory.create(
ModelProvider.GEMINI,
api_key="your-api-key"
)
# Create CogCache client
cogcache_client = ModelFactory.create(
ModelProvider.COGCACHE,
api_key="your-cogcache-key",
model="gpt-4"
)
# Create local Ollama client
ollama_client = ModelFactory.create(
ModelProvider.OLLAMA,
model="llama2:latest"
)
# Use any client
async def test_model(client):
response = await client.create([
UserMessage(content="What is the capital of France?", source="user")
])
print(response)
-
Advanced Capabilities
- Multiple LLM provider support
- GitHub OAuth authentication
- Configurable agent behaviors
- Comprehensive error handling and recovery
- Multi-modal content processing (text, images)
- Execution workspace isolation
-
Developer-Friendly
- Easy-to-use CLI
- Extensive documentation
- Flexible configuration
- Active community support
- Install using uv (recommended):
uv pip install agentic-fleet
playwright install --with-deps chromium # Optional: Install Playwright
- Configure environment:
cp .env.example .env
# Edit .env with your API keys
- Start the server:
agenticfleet start # With OAuth
agenticfleet start no-oauth # Without OAuth
- Clone and configure:
git clone https://github.com/qredence/agenticfleet.git
cd agenticfleet
cp .env.example .env # Configure your .env file
- Build and run with Docker Compose:
# Build the image
docker compose build
# Run with OAuth enabled (default)
docker compose up
# Or run without OAuth
docker compose run -e RUN_MODE=no-oauth agenticfleet
You can provide environment variables in several ways:
- Using a .env file:
cp .env.example .env
# Edit .env with your values
docker compose up
- Using command line arguments:
docker compose build \
--build-arg AZURE_OPENAI_API_KEY=your_key \
--build-arg AZURE_OPENAI_ENDPOINT=your_endpoint \
--build-arg USE_OAUTH=true
- Using environment variables:
export AZURE_OPENAI_API_KEY=your_key
export AZURE_OPENAI_ENDPOINT=your_endpoint
docker compose up
- For production deployments:
docker run -d \
-e AZURE_OPENAI_API_KEY=your_key \
-e AZURE_OPENAI_ENDPOINT=your_endpoint \
-e USE_OAUTH=true \
-p 8001:8001 \
qredence/agenticfleet:latest
Key features of the Docker setup:
- Python 3.12 environment
- Automatic dependency installation
- Volume mounting for live development
- Environment variable management
- Health checking and automatic restarts
- Resource limits and optimization
For VS Code users with the Dev Containers extension:
- Open in VS Code:
code agenticfleet
- Press F1 and select "Dev Containers: Open Folder in Container"
The dev container provides:
- Full Python 3.12 development environment
- Pre-configured VS Code extensions
- Integrated debugging
- Live reload capability
- All dependencies pre-installed
AgenticFleet supports multiple LLM providers through a unified interface:
-
OpenAI
- GPT-4 and other OpenAI models
- Function calling and vision capabilities
- JSON mode support
-
Azure OpenAI
- Azure-hosted OpenAI models
- Azure AD authentication support
- Enterprise-grade security
-
Google Gemini
- Gemini Pro and Ultra models
- OpenAI-compatible API
- Multimodal capabilities
-
DeepSeek
- DeepSeek's language models
- OpenAI-compatible API
- Specialized model capabilities
-
Ollama
- Local model deployment
- Various open-source models
- Offline capabilities
-
Azure AI Foundry
- Azure-hosted models (e.g., Phi-4)
- GitHub authentication
- Enterprise integration
-
CogCache
- OpenAI-compatible API with caching
- Improved response times
- Cost optimization
- Automatic retry handling
graph TD
User[Chainlit UI] -->|HTTP| App[app.py]
App --> AgentTeam[MagenticOneGroupChat]
AgentTeam --> WebSurfer
AgentTeam --> FileSurfer
AgentTeam --> Coder
AgentTeam --> Executor
WebSurfer -->|Selenium| Web[External Websites]
FileSurfer -->|OS| FileSystem[Local Files]
Executor -->|Subprocess| Code[Python/Runtime]
The .env.example
file contains all required and recommended settings:
# Required: Azure OpenAI Configuration
AZURE_OPENAI_API_KEY=your_api_key
AZURE_OPENAI_ENDPOINT=your_endpoint
AZURE_OPENAI_DEPLOYMENT=your_deployment
AZURE_OPENAI_MODEL=your_model
# Optional: OAuth Configuration
USE_OAUTH=false # Set to true to enable GitHub OAuth
OAUTH_GITHUB_CLIENT_ID=
OAUTH_GITHUB_CLIENT_SECRET=
OAUTH_REDIRECT_URI=http://localhost:8001/oauth/callback
# Optional: Other Model Provider Configurations
GEMINI_API_KEY=your_gemini_key
DEEPSEEK_API_KEY=your_deepseek_key
GITHUB_TOKEN=your_github_pat # For Azure AI Foundry
COGCACHE_API_KEY=your_cogcache_key # For CogCache proxy API
AgenticFleet implements comprehensive error handling:
- Graceful degradation on service failures
- Detailed error logging and reporting
- Automatic cleanup of resources
- Session state recovery
- Execution timeout management
- Python 3.10-3.12 (Python 3.13 is not yet supported)
- uv package manager (recommended)
- Azure OpenAI API access
- Clone and install:
git clone https://github.com/qredence/agenticfleet.git
cd agenticfleet
pip install uv
uv pip install -e .
uv pip install -e ".[dev]"
- Run tests:
pytest tests/
- Installation Guide - Detailed setup instructions
- Usage Guide - How to use AgenticFleet
- API Reference - Complete API documentation
- Architecture Overview - System architecture and design
We welcome contributions! Please see our Contributing Guide for details.
For security concerns, please review our Security Policy.
This project is licensed under the Apache-2.0 License - see the LICENSE file for details.