Skip to content

Adaptive Agentic AI Reasoning That Empower, Inform, and Integrate Seamlessly. Join the Discord for suggestion or support ! https://discord.gg/ebgy7gtZHK

License

Notifications You must be signed in to change notification settings

Qredence/AgenticFleet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AgenticFleet

A powerful multi-agent system for adaptive AI reasoning and automation. AgenticFleet combines Chainlit's interactive interface with AutoGen's multi-agent capabilities to create a flexible, powerful AI assistant platform.

Pepy Total Downloads

GitHub License GitHub forks GitHub Repo stars

Codacy Badge

chainlitlight

Quick Start with Docker

# Pull the latest image
docker pull qredence/agenticfleet:latest

# Run with minimum required configuration
docker run -d -p 8001:8001 qredence/agenticfleet:latest

# Or run with additional configuration
docker run -d -p 8001:8001 \
  -e AZURE_OPENAI_API_KEY=your_key \
  -e AZURE_OPENAI_ENDPOINT=your_endpoint \
  -e AZURE_OPENAI_DEPLOYMENT=your_deployment \
  -e AZURE_OPENAI_MODEL=your_model \
  -e USE_OAUTH=true \
  -e OAUTH_GITHUB_CLIENT_ID=your_client_id \
  -e OAUTH_GITHUB_CLIENT_SECRET=your_client_secret \
  qredence/agenticfleet:latest

# Run without OAuth
docker run -d -p 8001:8001 \
  -e AZURE_OPENAI_API_KEY=your_key \
  -e AZURE_OPENAI_ENDPOINT=your_endpoint \
  -e USE_OAUTH=false \
  qredence/agenticfleet:latest

Core Components

AgenticFleet operates through a coordinated team of specialized agents:

  • WebSurfer: Expert web navigation agent

    • Extracts information from web pages
    • Captures and processes screenshots
    • Provides structured summaries of findings
  • FileSurfer: File system specialist

    • Searches and analyzes workspace files
    • Manages file operations efficiently
    • Extracts relevant information from documents
  • Coder: Development expert

    • Generates and reviews code
    • Implements solutions
    • Maintains code quality
  • Executor: Code execution specialist

    • Safely runs code in isolated workspace
    • Monitors execution and handles timeouts
    • Provides detailed execution feedback

Model Provider Installation

Install providers using pip:

# Install base package
pip install agentic-fleet

# Install all model providers
pip install "agentic-fleet[models]"

# Or install individual providers
pip install "google-cloud-aiplatform>=1.38.0" "google-generativeai>=0.3.0"  # For Gemini
pip install "deepseek>=0.1.0"  # For DeepSeek
pip install "ollama>=0.1.5"  # For Ollama

Model Provider Usage

from agentic_fleet.models import ModelFactory, ModelProvider
from autogen_core.models import UserMessage

# Create Azure OpenAI client
azure_client = ModelFactory.create(
    ModelProvider.AZURE_OPENAI,
    deployment="your-deployment",
    model="gpt-4",
    endpoint="your-endpoint"
)

# Create Gemini client
gemini_client = ModelFactory.create(
    ModelProvider.GEMINI,
    api_key="your-api-key"
)

# Create CogCache client
cogcache_client = ModelFactory.create(
    ModelProvider.COGCACHE,
    api_key="your-cogcache-key",
    model="gpt-4"
)

# Create local Ollama client
ollama_client = ModelFactory.create(
    ModelProvider.OLLAMA,
    model="llama2:latest"
)

# Use any client
async def test_model(client):
    response = await client.create([
        UserMessage(content="What is the capital of France?", source="user")
    ])
    print(response)

Key Features

  • Advanced Capabilities

    • Multiple LLM provider support
    • GitHub OAuth authentication
    • Configurable agent behaviors
    • Comprehensive error handling and recovery
    • Multi-modal content processing (text, images)
    • Execution workspace isolation
  • Developer-Friendly

    • Easy-to-use CLI
    • Extensive documentation
    • Flexible configuration
    • Active community support

Installation Options

Option 1: Direct Installation

  1. Install using uv (recommended):
uv pip install agentic-fleet
playwright install --with-deps chromium  # Optional: Install Playwright
  1. Configure environment:
cp .env.example .env
# Edit .env with your API keys
  1. Start the server:
agenticfleet start        # With OAuth
agenticfleet start no-oauth  # Without OAuth

Option 2: Docker Setup

  1. Clone and configure:
git clone https://github.com/qredence/agenticfleet.git
cd agenticfleet
cp .env.example .env     # Configure your .env file
  1. Build and run with Docker Compose:
# Build the image
docker compose build

# Run with OAuth enabled (default)
docker compose up

# Or run without OAuth
docker compose run -e RUN_MODE=no-oauth agenticfleet

Docker Environment Configuration

You can provide environment variables in several ways:

  1. Using a .env file:
cp .env.example .env
# Edit .env with your values
docker compose up
  1. Using command line arguments:
docker compose build \
  --build-arg AZURE_OPENAI_API_KEY=your_key \
  --build-arg AZURE_OPENAI_ENDPOINT=your_endpoint \
  --build-arg USE_OAUTH=true
  1. Using environment variables:
export AZURE_OPENAI_API_KEY=your_key
export AZURE_OPENAI_ENDPOINT=your_endpoint
docker compose up
  1. For production deployments:
docker run -d \
  -e AZURE_OPENAI_API_KEY=your_key \
  -e AZURE_OPENAI_ENDPOINT=your_endpoint \
  -e USE_OAUTH=true \
  -p 8001:8001 \
  qredence/agenticfleet:latest

Key features of the Docker setup:

  • Python 3.12 environment
  • Automatic dependency installation
  • Volume mounting for live development
  • Environment variable management
  • Health checking and automatic restarts
  • Resource limits and optimization

Option 3: Development Container

For VS Code users with the Dev Containers extension:

  1. Open in VS Code:
code agenticfleet
  1. Press F1 and select "Dev Containers: Open Folder in Container"

The dev container provides:

  • Full Python 3.12 development environment
  • Pre-configured VS Code extensions
  • Integrated debugging
  • Live reload capability
  • All dependencies pre-installed

Supported Model Providers

AgenticFleet supports multiple LLM providers through a unified interface:

  • OpenAI

    • GPT-4 and other OpenAI models
    • Function calling and vision capabilities
    • JSON mode support
  • Azure OpenAI

    • Azure-hosted OpenAI models
    • Azure AD authentication support
    • Enterprise-grade security
  • Google Gemini

    • Gemini Pro and Ultra models
    • OpenAI-compatible API
    • Multimodal capabilities
  • DeepSeek

    • DeepSeek's language models
    • OpenAI-compatible API
    • Specialized model capabilities
  • Ollama

    • Local model deployment
    • Various open-source models
    • Offline capabilities
  • Azure AI Foundry

    • Azure-hosted models (e.g., Phi-4)
    • GitHub authentication
    • Enterprise integration
  • CogCache

    • OpenAI-compatible API with caching
    • Improved response times
    • Cost optimization
    • Automatic retry handling

System Architecture

graph TD
    User[Chainlit UI] -->|HTTP| App[app.py]
    App --> AgentTeam[MagenticOneGroupChat]
    AgentTeam --> WebSurfer
    AgentTeam --> FileSurfer
    AgentTeam --> Coder
    AgentTeam --> Executor
    WebSurfer -->|Selenium| Web[External Websites]
    FileSurfer -->|OS| FileSystem[Local Files]
    Executor -->|Subprocess| Code[Python/Runtime]
Loading

Configuration

The .env.example file contains all required and recommended settings:

# Required: Azure OpenAI Configuration
AZURE_OPENAI_API_KEY=your_api_key
AZURE_OPENAI_ENDPOINT=your_endpoint
AZURE_OPENAI_DEPLOYMENT=your_deployment
AZURE_OPENAI_MODEL=your_model

# Optional: OAuth Configuration
USE_OAUTH=false # Set to true to enable GitHub OAuth
OAUTH_GITHUB_CLIENT_ID=
OAUTH_GITHUB_CLIENT_SECRET=
OAUTH_REDIRECT_URI=http://localhost:8001/oauth/callback

# Optional: Other Model Provider Configurations
GEMINI_API_KEY=your_gemini_key
DEEPSEEK_API_KEY=your_deepseek_key
GITHUB_TOKEN=your_github_pat  # For Azure AI Foundry
COGCACHE_API_KEY=your_cogcache_key  # For CogCache proxy API

Error Handling

AgenticFleet implements comprehensive error handling:

  • Graceful degradation on service failures
  • Detailed error logging and reporting
  • Automatic cleanup of resources
  • Session state recovery
  • Execution timeout management

Development

Prerequisites

  • Python 3.10-3.12 (Python 3.13 is not yet supported)
  • uv package manager (recommended)
  • Azure OpenAI API access

Setup

  1. Clone and install:
git clone https://github.com/qredence/agenticfleet.git
cd agenticfleet
pip install uv
uv pip install -e .
uv pip install -e ".[dev]"
  1. Run tests:
pytest tests/

Documentation

Contributing

We welcome contributions! Please see our Contributing Guide for details.

Security

For security concerns, please review our Security Policy.

License

This project is licensed under the Apache-2.0 License - see the LICENSE file for details.

Support

Star History

Star History Chart