The code of the paper "Deep Compressed Video Super-Resolution With Guidance of Coding Priors".
CUDA==11.6 Python==3.7 Pytorch==1.13
conda create -n CDFO python=3.7 -y && conda activate CDFO
git clone --depth=1 https://github.com/QZ1-boy/CDFO && cd QZ1-boy/CDFO/
# given CUDA 11.6
python -m pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu116
python -m pip install tqdm lmdb pyyaml opencv-python scikit-image
Our work is built on the CD-VSR and uses the same datasets.
Download raw HR videos and compressed LR videos in [CD-VSR] (https://ieeexplore.ieee.org/abstract/document/9509352)
python train_LD_37.py
python test_LD_37.py
If this repository is helpful to your research, please cite our paper:
@article{zhu2024deep,
title={Deep compressed video super-resolution with guidance of coding priors},
author={Zhu, Qiang and Chen, Feiyu and Liu, Yu and Zhu, Shuyuan and Zeng, Bing},
journal={IEEE Transactions on Broadcasting},
year={2024},
publisher={IEEE}
}