Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix load pretrain weight issue in ResNet #7924

Merged
merged 7 commits into from
Jul 18, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 3 additions & 4 deletions monai/networks/nets/resnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -510,16 +510,15 @@ def _resnet(
# Check model bias_downsample and shortcut_type
bias_downsample, shortcut_type = get_medicalnet_pretrained_resnet_args(resnet_depth)
if shortcut_type == kwargs.get("shortcut_type", "B") and (
bool(bias_downsample) == kwargs.get("bias_downsample", False) if bias_downsample != -1 else True
bias_downsample == kwargs.get("bias_downsample", True)
):
# Download the MedicalNet pretrained model
model_state_dict = get_pretrained_resnet_medicalnet(
resnet_depth, device=device, datasets23=True
)
else:
raise NotImplementedError(
f"Please set shortcut_type to {shortcut_type} and bias_downsample to"
f"{bool(bias_downsample) if bias_downsample!=-1 else 'True or False'}"
f"Please set shortcut_type to {shortcut_type} and bias_downsample to {bias_downsample} "
f"when using pretrained MedicalNet resnet{resnet_depth}"
)
else:
Expand Down Expand Up @@ -681,7 +680,7 @@ def get_medicalnet_pretrained_resnet_args(resnet_depth: int):
# After testing
# False: 10, 50, 101, 152, 200
# Any: 18, 34
bias_downsample = -1 if resnet_depth in [18, 34] else 0 # 18, 10, 34
bias_downsample = True if resnet_depth in [18, 34] else False # 18, 10, 34
KumoLiu marked this conversation as resolved.
Show resolved Hide resolved
shortcut_type = "A" if resnet_depth in [18, 34] else "B"
return bias_downsample, shortcut_type

Expand Down
8 changes: 3 additions & 5 deletions tests/test_resnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -266,7 +266,7 @@ def test_resnet_shape(self, model, input_param, input_shape, expected_shape):
@parameterized.expand(PRETRAINED_TEST_CASES)
@skip_if_quick
@skip_if_no_cuda
def test_resnet_pretrained(self, model, input_param, input_shape, expected_shape):
def test_resnet_pretrained(self, model, input_param, _input_shape, _expected_shape):
net = model(**input_param).to(device)
# Save ckpt
torch.save(net.state_dict(), self.tmp_ckpt_filename)
Expand All @@ -290,9 +290,7 @@ def test_resnet_pretrained(self, model, input_param, input_shape, expected_shape
and input_param.get("n_input_channels", 3) == 1
and input_param.get("feed_forward", True) is False
and input_param.get("shortcut_type", "B") == shortcut_type
and (
input_param.get("bias_downsample", True) == bool(bias_downsample) if bias_downsample != -1 else True
)
and (input_param.get("bias_downsample", True) == bias_downsample)
):
model(**cp_input_param)
else:
Expand All @@ -303,7 +301,7 @@ def test_resnet_pretrained(self, model, input_param, input_shape, expected_shape
cp_input_param["n_input_channels"] = 1
cp_input_param["feed_forward"] = False
cp_input_param["shortcut_type"] = shortcut_type
cp_input_param["bias_downsample"] = bool(bias_downsample) if bias_downsample != -1 else True
cp_input_param["bias_downsample"] = bias_downsample
if cp_input_param.get("spatial_dims", 3) == 3:
with skip_if_downloading_fails():
pretrained_net = model(**cp_input_param).to(device)
Expand Down
Loading