Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

6765 update GeneralizedDiceLoss #6775

Merged
merged 3 commits into from
Jul 26, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions monai/losses/dice.py
Original file line number Diff line number Diff line change
Expand Up @@ -268,6 +268,7 @@ def __init__(
smooth_dr: a small constant added to the denominator to avoid nan.
batch: whether to sum the intersection and union areas over the batch dimension before the dividing.
Defaults to False, intersection over union is computed from each item in the batch.
If True, the class-weighted intersection and union areas are first summed across the batches.

Raises:
TypeError: When ``other_act`` is not an ``Optional[Callable]``.
Expand Down Expand Up @@ -360,8 +361,9 @@ def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
max_values = torch.max(w, dim=1)[0].unsqueeze(dim=1)
w = w + infs * max_values

numer = 2.0 * (intersection * w) + self.smooth_nr
denom = (denominator * w) + self.smooth_dr
final_reduce_dim = 0 if self.batch else 1
numer = 2.0 * (intersection * w).sum(final_reduce_dim, keepdim=True) + self.smooth_nr
denom = (denominator * w).sum(final_reduce_dim, keepdim=True) + self.smooth_dr
f: torch.Tensor = 1.0 - (numer / denom)

if self.reduction == LossReduction.MEAN.value:
Expand Down
12 changes: 6 additions & 6 deletions tests/test_generalized_dice_loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,15 +48,15 @@
"input": torch.tensor([[[-1.0, 0.0, 1.0], [1.0, 0.0, -1.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]]),
"target": torch.tensor([[[1.0, 0.0, 0.0]], [[1.0, 1.0, 0.0]]]),
},
0.435035,
0.469964,
],
[ # shape: (2, 2, 3), (2, 1, 3)
{"include_background": True, "to_onehot_y": True, "softmax": True, "smooth_nr": 1e-4, "smooth_dr": 1e-4},
{
"input": torch.tensor([[[-1.0, 0.0, 1.0], [1.0, 0.0, -1.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]]),
"target": torch.tensor([[[1.0, 0.0, 0.0]], [[1.0, 1.0, 0.0]]]),
},
0.3837,
0.414507,
],
[ # shape: (2, 2, 3), (2, 1, 3)
{
Expand All @@ -71,7 +71,7 @@
"input": torch.tensor([[[-1.0, 0.0, 1.0], [1.0, 0.0, -1.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]]),
"target": torch.tensor([[[1.0, 0.0, 0.0]], [[1.0, 1.0, 0.0]]]),
},
1.5348,
0.829015,
],
[ # shape: (2, 2, 3), (2, 1, 3)
{
Expand All @@ -86,7 +86,7 @@
"input": torch.tensor([[[-1.0, 0.0, 1.0], [1.0, 0.0, -1.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]]),
"target": torch.tensor([[[1.0, 0.0, 0.0]], [[1.0, 1.0, 0.0]]]),
},
[[[0.210949], [0.295351]], [[0.599976], [0.428522]]],
[[[0.273476]], [[0.555539]]],
],
[ # shape: (2, 2, 3), (2, 1, 3)
{"include_background": False, "to_onehot_y": True, "smooth_nr": 1e-8, "smooth_dr": 1e-8},
Expand Down Expand Up @@ -114,7 +114,7 @@
"input": torch.tensor([[[0.0, 10.0, 10.0, 10.0], [10.0, 0.0, 0.0, 0.0]]]),
"target": torch.tensor([[[1, 1, 0, 0]]]),
},
0.26669,
0.250023,
],
[ # shape: (2, 1, 2, 2), (2, 1, 2, 2)
{"include_background": True, "other_act": torch.tanh, "smooth_nr": 1e-4, "smooth_dr": 1e-4},
Expand All @@ -136,7 +136,7 @@
"input": torch.tensor([[[-1.0, 0.0, 1.0], [1.0, 0.0, -1.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]]),
"target": torch.tensor([[[1.0, 0.0, 0.0]], [[1.0, 1.0, 0.0]]]),
},
-8.55485,
-0.097833,
],
]

Expand Down