Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added (Rand)ScaleScaleIntensityFixedMean(d) and modified (Rand)AdjustContrast(d) #6542

Merged
merged 20 commits into from
Jun 8, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
20 commits
Select commit Hold shift + click to select a range
dce66d0
Added (Rand)ScaleScaleIntensityFixedMean(d) and modified (Rand)Adjust…
aaronkujawa May 22, 2023
b9b07bf
Updated docs transforms.rst
aaronkujawa May 23, 2023
76fe341
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] May 23, 2023
3541b8f
Merge branch 'dev' into intensity_transforms
aaronkujawa May 23, 2023
b03fe76
DCO Remediation Commit for Aaron Kujawa <askujawa@gmail.com>
aaronkujawa May 23, 2023
3d8eb20
Code formatting
aaronkujawa May 23, 2023
d6122bc
Fixed type check errors
aaronkujawa May 23, 2023
b0b2f1b
Removed poltergeist from RandScaleIntensityFixedMean
aaronkujawa May 30, 2023
e1c652e
Removed poltergeist from RandAdjustContrast
aaronkujawa May 30, 2023
de9c987
Improved docstrings
aaronkujawa May 30, 2023
4b3c1c9
Merge branch 'Project-MONAI:dev' into intensity_transforms
aaronkujawa May 30, 2023
9c19cc2
Merge branch 'dev' into intensity_transforms
aaronkujawa May 30, 2023
6b2a90d
Setting factor=0 as safe default in RandScaleIntensityFixedMean
aaronkujawa May 30, 2023
743d3e1
Code formatting
aaronkujawa May 30, 2023
7efc366
Bug fix: set default gamma_value=1
aaronkujawa May 30, 2023
c997891
Improved docstring: Added links to nnU-Net paper and function
aaronkujawa May 30, 2023
b21cbad
Code formatting: pep8 snake-case names
aaronkujawa May 30, 2023
abf6087
Merge branch 'dev' into intensity_transforms
wyli Jun 1, 2023
82b5fbe
Merge branch 'Project-MONAI:dev' into intensity_transforms
aaronkujawa Jun 2, 2023
cb092fb
Merge branch 'dev' into intensity_transforms
wyli Jun 8, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions docs/source/transforms.rst
Original file line number Diff line number Diff line change
Expand Up @@ -317,6 +317,18 @@ Intensity
:members:
:special-members: __call__

`ScaleIntensityFixedMean`
"""""""""""""""""""""""""
.. autoclass:: ScaleIntensityFixedMean
:members:
:special-members: __call__

`RandScaleIntensityFixedMean`
"""""""""""""""""""""""""""""
.. autoclass:: RandScaleIntensityFixedMean
:members:
:special-members: __call__

`NormalizeIntensity`
""""""""""""""""""""
.. image:: https://github.com/Project-MONAI/DocImages/raw/main/transforms/NormalizeIntensity.png
Expand Down Expand Up @@ -1386,6 +1398,12 @@ Intensity (Dict)
:members:
:special-members: __call__

`RandScaleIntensityFixedMeand`
"""""""""""""""""""""""""""""""
.. autoclass:: RandScaleIntensityFixedMeand
:members:
:special-members: __call__

`NormalizeIntensityd`
"""""""""""""""""""""
.. image:: https://github.com/Project-MONAI/DocImages/raw/main/transforms/NormalizeIntensityd.png
Expand Down
5 changes: 5 additions & 0 deletions monai/transforms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -118,10 +118,12 @@
RandKSpaceSpikeNoise,
RandRicianNoise,
RandScaleIntensity,
RandScaleIntensityFixedMean,
RandShiftIntensity,
RandStdShiftIntensity,
SavitzkyGolaySmooth,
ScaleIntensity,
ScaleIntensityFixedMean,
ScaleIntensityRange,
ScaleIntensityRangePercentiles,
ShiftIntensity,
Expand Down Expand Up @@ -198,6 +200,9 @@
RandScaleIntensityd,
RandScaleIntensityD,
RandScaleIntensityDict,
RandScaleIntensityFixedMeand,
RandScaleIntensityFixedMeanD,
RandScaleIntensityFixedMeanDict,
RandShiftIntensityd,
RandShiftIntensityD,
RandShiftIntensityDict,
Expand Down
231 changes: 223 additions & 8 deletions monai/transforms/intensity/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,8 @@
"RandBiasField",
"ScaleIntensity",
"RandScaleIntensity",
"ScaleIntensityFixedMean",
"RandScaleIntensityFixedMean",
"NormalizeIntensity",
"ThresholdIntensity",
"ScaleIntensityRange",
Expand Down Expand Up @@ -466,6 +468,161 @@ def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor:
return ret


class ScaleIntensityFixedMean(Transform):
"""
Scale the intensity of input image by ``v = v * (1 + factor)``, then shift the output so that the output image has the
same mean as the input.
"""

backend = [TransformBackends.TORCH, TransformBackends.NUMPY]

def __init__(
self,
factor: float = 0,
preserve_range: bool = False,
fixed_mean: bool = True,
channel_wise: bool = False,
dtype: DtypeLike = np.float32,
) -> None:
"""
Args:
factor: factor scale by ``v = v * (1 + factor)``.
preserve_range: clips the output array/tensor to the range of the input array/tensor
fixed_mean: subtract the mean intensity before scaling with `factor`, then add the same value after scaling
to ensure that the output has the same mean as the input.
channel_wise: if True, scale on each channel separately. `preserve_range` and `fixed_mean` are also applied
on each channel separately if `channel_wise` is True. Please ensure that the first dimension represents the
channel of the image if True.
dtype: output data type, if None, same as input image. defaults to float32.
"""
self.factor = factor
self.preserve_range = preserve_range
self.fixed_mean = fixed_mean
self.channel_wise = channel_wise
self.dtype = dtype

def __call__(self, img: NdarrayOrTensor, factor=None) -> NdarrayOrTensor:
"""
Apply the transform to `img`.
Args:
img: the input tensor/array
factor: factor scale by ``v = v * (1 + factor)``

"""

factor = factor if factor is not None else self.factor

img = convert_to_tensor(img, track_meta=get_track_meta())
img_t = convert_to_tensor(img, track_meta=False)
ret: NdarrayOrTensor
if self.channel_wise:
out = []
for d in img_t:
if self.preserve_range:
clip_min = d.min()
clip_max = d.max()

if self.fixed_mean:
mn = d.mean()
d = d - mn

out_channel = d * (1 + factor)

if self.fixed_mean:
out_channel = out_channel + mn

if self.preserve_range:
out_channel = clip(out_channel, clip_min, clip_max)

out.append(out_channel)
ret = torch.stack(out) # type: ignore
else:
if self.preserve_range:
clip_min = img_t.min()
clip_max = img_t.max()

if self.fixed_mean:
mn = img_t.mean()
img_t = img_t - mn

ret = img_t * (1 + factor)

if self.fixed_mean:
ret = ret + mn

if self.preserve_range:
ret = clip(ret, clip_min, clip_max)

ret = convert_to_dst_type(ret, dst=img, dtype=self.dtype or img_t.dtype)[0]
return ret


class RandScaleIntensityFixedMean(RandomizableTransform):
"""
Randomly scale the intensity of input image by ``v = v * (1 + factor)`` where the `factor`
is randomly picked. Subtract the mean intensity before scaling with `factor`, then add the same value after scaling
to ensure that the output has the same mean as the input.
"""

backend = ScaleIntensityFixedMean.backend

def __init__(
self,
prob: float = 0.1,
factors: Sequence[float] | float = 0,
KumoLiu marked this conversation as resolved.
Show resolved Hide resolved
fixed_mean: bool = True,
preserve_range: bool = False,
dtype: DtypeLike = np.float32,
) -> None:
"""
Args:
factors: factor range to randomly scale by ``v = v * (1 + factor)``.
if single number, factor value is picked from (-factors, factors).
preserve_range: clips the output array/tensor to the range of the input array/tensor
fixed_mean: subtract the mean intensity before scaling with `factor`, then add the same value after scaling
to ensure that the output has the same mean as the input.
channel_wise: if True, scale on each channel separately. `preserve_range` and `fixed_mean` are also applied
on each channel separately if `channel_wise` is True. Please ensure that the first dimension represents the
channel of the image if True.
dtype: output data type, if None, same as input image. defaults to float32.

"""
RandomizableTransform.__init__(self, prob)
if isinstance(factors, (int, float)):
self.factors = (min(-factors, factors), max(-factors, factors))
elif len(factors) != 2:
raise ValueError("factors should be a number or pair of numbers.")
else:
self.factors = (min(factors), max(factors))
self.factor = self.factors[0]
self.fixed_mean = fixed_mean
self.preserve_range = preserve_range
self.dtype = dtype

self.scaler = ScaleIntensityFixedMean(
factor=self.factor, fixed_mean=self.fixed_mean, preserve_range=self.preserve_range, dtype=self.dtype
)

def randomize(self, data: Any | None = None) -> None:
super().randomize(None)
if not self._do_transform:
return None
self.factor = self.R.uniform(low=self.factors[0], high=self.factors[1])

def __call__(self, img: NdarrayOrTensor, randomize: bool = True) -> NdarrayOrTensor:
"""
Apply the transform to `img`.
"""
img = convert_to_tensor(img, track_meta=get_track_meta())
if randomize:
self.randomize()

if not self._do_transform:
return convert_data_type(img, dtype=self.dtype)[0]

return self.scaler(img, self.factor)


class RandScaleIntensity(RandomizableTransform):
"""
Randomly scale the intensity of input image by ``v = v * (1 + factor)`` where the `factor`
Expand Down Expand Up @@ -799,48 +956,99 @@ def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor:

class AdjustContrast(Transform):
"""
Changes image intensity by gamma. Each pixel/voxel intensity is updated as::
Changes image intensity with gamma transform. Each pixel/voxel intensity is updated as::

x = ((x - min) / intensity_range) ^ gamma * intensity_range + min

Args:
gamma: gamma value to adjust the contrast as function.
invert_image: whether to invert the image before applying gamma augmentation. If True, multiply all intensity
values with -1 before the gamma transform and again after the gamma transform. This behaviour is mimicked
from `nnU-Net <https://www.nature.com/articles/s41592-020-01008-z>`_, specifically `this
<https://github.com/MIC-DKFZ/batchgenerators/blob/7fb802b28b045b21346b197735d64f12fbb070aa/batchgenerators/augmentations/color_augmentations.py#L107>`_
function.
retain_stats: if True, applies a scaling factor and an offset to all intensity values after gamma transform to
ensure that the output intensity distribution has the same mean and standard deviation as the intensity
distribution of the input. This behaviour is mimicked from `nnU-Net
<https://www.nature.com/articles/s41592-020-01008-z>`_, specifically `this
<https://github.com/MIC-DKFZ/batchgenerators/blob/7fb802b28b045b21346b197735d64f12fbb070aa/batchgenerators/augmentations/color_augmentations.py#L107>`_
function.
"""

backend = [TransformBackends.TORCH, TransformBackends.NUMPY]

def __init__(self, gamma: float) -> None:
def __init__(self, gamma: float, invert_image: bool = False, retain_stats: bool = False) -> None:
if not isinstance(gamma, (int, float)):
raise ValueError(f"gamma must be a float or int number, got {type(gamma)} {gamma}.")
self.gamma = gamma
self.invert_image = invert_image
self.retain_stats = retain_stats

def __call__(self, img: NdarrayOrTensor) -> NdarrayOrTensor:
def __call__(self, img: NdarrayOrTensor, gamma=None) -> NdarrayOrTensor:
"""
Apply the transform to `img`.
gamma: gamma value to adjust the contrast as function.
"""
img = convert_to_tensor(img, track_meta=get_track_meta())
gamma = gamma if gamma is not None else self.gamma

if self.invert_image:
img = -img

if self.retain_stats:
mn = img.mean()
sd = img.std()

epsilon = 1e-7
img_min = img.min()
img_range = img.max() - img_min
ret: NdarrayOrTensor = ((img - img_min) / float(img_range + epsilon)) ** self.gamma * img_range + img_min
ret: NdarrayOrTensor = ((img - img_min) / float(img_range + epsilon)) ** gamma * img_range + img_min

if self.retain_stats:
# zero mean and normalize
ret = ret - ret.mean()
ret = ret / (ret.std() + 1e-8)
# restore old mean and standard deviation
ret = sd * ret + mn

if self.invert_image:
ret = -ret

return ret


class RandAdjustContrast(RandomizableTransform):
"""
Randomly changes image intensity by gamma. Each pixel/voxel intensity is updated as::
Randomly changes image intensity with gamma transform. Each pixel/voxel intensity is updated as:

x = ((x - min) / intensity_range) ^ gamma * intensity_range + min

Args:
prob: Probability of adjustment.
gamma: Range of gamma values.
If single number, value is picked from (0.5, gamma), default is (0.5, 4.5).
invert_image: whether to invert the image before applying gamma augmentation. If True, multiply all intensity
values with -1 before the gamma transform and again after the gamma transform. This behaviour is mimicked
from `nnU-Net <https://www.nature.com/articles/s41592-020-01008-z>`_, specifically `this
<https://github.com/MIC-DKFZ/batchgenerators/blob/7fb802b28b045b21346b197735d64f12fbb070aa/batchgenerators/augmentations/color_augmentations.py#L107>`_
function.
retain_stats: if True, applies a scaling factor and an offset to all intensity values after gamma transform to
ensure that the output intensity distribution has the same mean and standard deviation as the intensity
distribution of the input. This behaviour is mimicked from `nnU-Net
<https://www.nature.com/articles/s41592-020-01008-z>`_, specifically `this
<https://github.com/MIC-DKFZ/batchgenerators/blob/7fb802b28b045b21346b197735d64f12fbb070aa/batchgenerators/augmentations/color_augmentations.py#L107>`_
function.
"""

backend = AdjustContrast.backend

def __init__(self, prob: float = 0.1, gamma: Sequence[float] | float = (0.5, 4.5)) -> None:
def __init__(
self,
prob: float = 0.1,
gamma: Sequence[float] | float = (0.5, 4.5),
invert_image: bool = False,
retain_stats: bool = False,
) -> None:
RandomizableTransform.__init__(self, prob)

if isinstance(gamma, (int, float)):
Expand All @@ -854,7 +1062,13 @@ def __init__(self, prob: float = 0.1, gamma: Sequence[float] | float = (0.5, 4.5
else:
self.gamma = (min(gamma), max(gamma))

self.gamma_value: float | None = None
self.gamma_value: float = 1.0
self.invert_image: bool = invert_image
self.retain_stats: bool = retain_stats

self.adjust_contrast = AdjustContrast(
self.gamma_value, invert_image=self.invert_image, retain_stats=self.retain_stats
)

def randomize(self, data: Any | None = None) -> None:
super().randomize(None)
Expand All @@ -875,7 +1089,8 @@ def __call__(self, img: NdarrayOrTensor, randomize: bool = True) -> NdarrayOrTen

if self.gamma_value is None:
raise RuntimeError("gamma_value is not set, please call `randomize` function first.")
return AdjustContrast(self.gamma_value)(img)

return self.adjust_contrast(img, self.gamma_value)


class ScaleIntensityRangePercentiles(Transform):
Expand Down
Loading