Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

4084 Add kwargs for Tensor.to() in engines #4112

Merged
merged 15 commits into from
Apr 13, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 18 additions & 2 deletions monai/engines/evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,6 +74,8 @@ class Evaluator(Workflow):
decollate: whether to decollate the batch-first data to a list of data after model computation,
recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`.
default to `True`.
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
`device`, `non_blocking`.

"""

Expand All @@ -95,6 +97,7 @@ def __init__(
event_names: Optional[List[Union[str, EventEnum]]] = None,
event_to_attr: Optional[dict] = None,
decollate: bool = True,
to_kwargs: Optional[Dict] = None,
) -> None:
super().__init__(
device=device,
Expand All @@ -113,6 +116,7 @@ def __init__(
event_names=event_names,
event_to_attr=event_to_attr,
decollate=decollate,
to_kwargs=to_kwargs,
)
mode = look_up_option(mode, ForwardMode)
if mode == ForwardMode.EVAL:
Expand Down Expand Up @@ -181,6 +185,8 @@ class SupervisedEvaluator(Evaluator):
decollate: whether to decollate the batch-first data to a list of data after model computation,
recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`.
default to `True`.
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
`device`, `non_blocking`.

"""

Expand All @@ -204,6 +210,7 @@ def __init__(
event_names: Optional[List[Union[str, EventEnum]]] = None,
event_to_attr: Optional[dict] = None,
decollate: bool = True,
to_kwargs: Optional[Dict] = None,
) -> None:
super().__init__(
device=device,
Expand All @@ -222,6 +229,7 @@ def __init__(
event_names=event_names,
event_to_attr=event_to_attr,
decollate=decollate,
to_kwargs=to_kwargs,
)

self.network = network
Expand All @@ -245,7 +253,9 @@ def _iteration(self, engine: Engine, batchdata: Dict[str, torch.Tensor]):
"""
if batchdata is None:
raise ValueError("Must provide batch data for current iteration.")
batch = self.prepare_batch(batchdata, engine.state.device, engine.non_blocking) # type: ignore
batch = self.prepare_batch(
batchdata, engine.state.device, engine.non_blocking, **engine.to_kwargs # type: ignore
)
if len(batch) == 2:
inputs, targets = batch
args: Tuple = ()
Expand Down Expand Up @@ -314,6 +324,8 @@ class EnsembleEvaluator(Evaluator):
decollate: whether to decollate the batch-first data to a list of data after model computation,
recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`.
default to `True`.
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
`device`, `non_blocking`.

"""

Expand All @@ -338,6 +350,7 @@ def __init__(
event_names: Optional[List[Union[str, EventEnum]]] = None,
event_to_attr: Optional[dict] = None,
decollate: bool = True,
to_kwargs: Optional[Dict] = None,
) -> None:
super().__init__(
device=device,
Expand All @@ -356,6 +369,7 @@ def __init__(
event_names=event_names,
event_to_attr=event_to_attr,
decollate=decollate,
to_kwargs=to_kwargs,
)

self.networks = ensure_tuple(networks)
Expand Down Expand Up @@ -387,7 +401,9 @@ def _iteration(self, engine: Engine, batchdata: Dict[str, torch.Tensor]):
"""
if batchdata is None:
raise ValueError("Must provide batch data for current iteration.")
batch = self.prepare_batch(batchdata, engine.state.device, engine.non_blocking) # type: ignore
batch = self.prepare_batch(
batchdata, engine.state.device, engine.non_blocking, **engine.to_kwargs # type: ignore
)
if len(batch) == 2:
inputs, targets = batch
args: Tuple = ()
Expand Down
18 changes: 16 additions & 2 deletions monai/engines/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,6 +105,8 @@ class SupervisedTrainer(Trainer):
default to `True`.
optim_set_to_none: when calling `optimizer.zero_grad()`, instead of setting to zero, set the grads to None.
more details: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html.
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
`device`, `non_blocking`.

"""

Expand All @@ -131,6 +133,7 @@ def __init__(
event_to_attr: Optional[dict] = None,
decollate: bool = True,
optim_set_to_none: bool = False,
to_kwargs: Optional[Dict] = None,
) -> None:
super().__init__(
device=device,
Expand All @@ -149,6 +152,7 @@ def __init__(
event_names=event_names,
event_to_attr=event_to_attr,
decollate=decollate,
to_kwargs=to_kwargs,
)

self.network = network
Expand Down Expand Up @@ -176,7 +180,9 @@ def _iteration(self, engine: Engine, batchdata: Dict[str, torch.Tensor]):
"""
if batchdata is None:
raise ValueError("Must provide batch data for current iteration.")
batch = self.prepare_batch(batchdata, engine.state.device, engine.non_blocking) # type: ignore
batch = self.prepare_batch(
batchdata, engine.state.device, engine.non_blocking, **engine.to_kwargs # type: ignore
)
if len(batch) == 2:
inputs, targets = batch
args: Tuple = ()
Expand Down Expand Up @@ -267,6 +273,8 @@ class GanTrainer(Trainer):
default to `True`.
optim_set_to_none: when calling `optimizer.zero_grad()`, instead of setting to zero, set the grads to None.
more details: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html.
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
`device`, `non_blocking`.

"""

Expand Down Expand Up @@ -298,6 +306,7 @@ def __init__(
train_handlers: Optional[Sequence] = None,
decollate: bool = True,
optim_set_to_none: bool = False,
to_kwargs: Optional[Dict] = None,
):
if not isinstance(train_data_loader, DataLoader):
raise ValueError("train_data_loader must be PyTorch DataLoader.")
Expand All @@ -317,6 +326,7 @@ def __init__(
handlers=train_handlers,
postprocessing=postprocessing,
decollate=decollate,
to_kwargs=to_kwargs,
)
self.g_network = g_network
self.g_optimizer = g_optimizer
Expand Down Expand Up @@ -349,13 +359,16 @@ def _iteration(
if batchdata is None:
raise ValueError("must provide batch data for current iteration.")

d_input = self.prepare_batch(batchdata, engine.state.device, engine.non_blocking) # type: ignore
d_input = self.prepare_batch(
batchdata, engine.state.device, engine.non_blocking, **engine.to_kwargs # type: ignore
)
batch_size = self.data_loader.batch_size # type: ignore
g_input = self.g_prepare_batch(
num_latents=batch_size,
latent_size=self.latent_shape,
device=engine.state.device, # type: ignore
non_blocking=engine.non_blocking, # type: ignore
**engine.to_kwargs, # type: ignore
)
g_output = self.g_inferer(g_input, self.g_network)

Expand All @@ -375,6 +388,7 @@ def _iteration(
latent_size=self.latent_shape,
device=engine.state.device, # type: ignore
non_blocking=engine.non_blocking, # type: ignore
**engine.to_kwargs, # type: ignore
)
g_output = self.g_inferer(g_input, self.g_network)
self.g_optimizer.zero_grad(set_to_none=self.optim_set_to_none)
Expand Down
62 changes: 45 additions & 17 deletions monai/engines/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,12 +104,16 @@ def get_devices_spec(devices: Optional[Sequence[torch.device]] = None) -> List[t


def default_prepare_batch(
batchdata: Dict[str, torch.Tensor], device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False
batchdata: Dict[str, torch.Tensor],
device: Optional[Union[str, torch.device]] = None,
non_blocking: bool = False,
**kwargs,
) -> Union[Tuple[torch.Tensor, Optional[torch.Tensor]], torch.Tensor]:
"""
Default function to prepare the data for current iteration.
Refer to ignite: https://pytorch.org/ignite/v0.4.5/generated/ignite.engine.create_supervised_trainer.html
#ignite.engine.create_supervised_trainer.
Args `batchdata`, `device`, `non_blocking` refer to the ignite API:
https://pytorch.org/ignite/v0.4.8/generated/ignite.engine.create_supervised_trainer.html.
`kwargs` supports other args for `Tensor.to()` API.

Returns:
image, label(optional).
Expand All @@ -119,18 +123,21 @@ def default_prepare_batch(
raise AssertionError("default prepare_batch expects dictionary input data.")
if isinstance(batchdata.get(CommonKeys.LABEL), torch.Tensor):
return (
batchdata[CommonKeys.IMAGE].to(device=device, non_blocking=non_blocking),
batchdata[CommonKeys.LABEL].to(device=device, non_blocking=non_blocking),
batchdata[CommonKeys.IMAGE].to(device=device, non_blocking=non_blocking, **kwargs),
batchdata[CommonKeys.LABEL].to(device=device, non_blocking=non_blocking, **kwargs),
)
if GanKeys.REALS in batchdata:
return batchdata[GanKeys.REALS].to(device=device, non_blocking=non_blocking)
return batchdata[CommonKeys.IMAGE].to(device=device, non_blocking=non_blocking), None
return batchdata[GanKeys.REALS].to(device=device, non_blocking=non_blocking, **kwargs)
return batchdata[CommonKeys.IMAGE].to(device=device, non_blocking=non_blocking, **kwargs), None


class PrepareBatch(ABC):
"""
Interface of customized prepare_batch in the trainer or evaluator workflows.
It takes the data of current batch, target device and non_blocking flag as input.
Args `batchdata`, `device`, `non_blocking` refer to the ignite API:
https://pytorch.org/ignite/v0.4.8/generated/ignite.engine.create_supervised_trainer.html.
`kwargs` supports other args for `Tensor.to()` API.

"""

Expand All @@ -140,6 +147,7 @@ def __call__(
batchdata: Dict[str, torch.Tensor],
device: Optional[Union[str, torch.device]] = None,
non_blocking: bool = False,
**kwargs,
):
raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.")

Expand All @@ -155,8 +163,15 @@ def __call__(
batchdata: Dict[str, torch.Tensor],
device: Optional[Union[str, torch.device]] = None,
non_blocking: bool = False,
**kwargs,
):
return default_prepare_batch(batchdata, device, non_blocking)
"""
Args `batchdata`, `device`, `non_blocking` refer to the ignite API:
https://pytorch.org/ignite/v0.4.8/generated/ignite.engine.create_supervised_trainer.html.
`kwargs` supports other args for `Tensor.to()` API.

"""
return default_prepare_batch(batchdata, device, non_blocking, **kwargs)


class PrepareBatchExtraInput(PrepareBatch):
Expand All @@ -181,29 +196,42 @@ def __call__(
batchdata: Dict[str, torch.Tensor],
device: Optional[Union[str, torch.device]] = None,
non_blocking: bool = False,
**kwargs,
):
image, label = default_prepare_batch(batchdata, device, non_blocking)
args = list()
kwargs = dict()
"""
Args `batchdata`, `device`, `non_blocking` refer to the ignite API:
https://pytorch.org/ignite/v0.4.8/generated/ignite.engine.create_supervised_trainer.html.
`kwargs` supports other args for `Tensor.to()` API.

"""
image, label = default_prepare_batch(batchdata, device, non_blocking, **kwargs)
args_ = list()
kwargs_ = dict()

def _get_data(key: str):
data = batchdata[key]
return data.to(device=device, non_blocking=non_blocking) if isinstance(data, torch.Tensor) else data
return (
data.to(device=device, non_blocking=non_blocking, **kwargs) if isinstance(data, torch.Tensor) else data
)

if isinstance(self.extra_keys, (str, list, tuple)):
for k in ensure_tuple(self.extra_keys):
args.append(_get_data(k))
args_.append(_get_data(k))
elif isinstance(self.extra_keys, dict):
for k, v in self.extra_keys.items():
kwargs.update({k: _get_data(v)})
kwargs_.update({k: _get_data(v)})

return image, label, tuple(args), kwargs
return image, label, tuple(args_), kwargs_


def default_make_latent(
num_latents: int, latent_size: int, device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False
num_latents: int,
latent_size: int,
device: Optional[Union[str, torch.device]] = None,
non_blocking: bool = False,
**kwargs,
) -> torch.Tensor:
return torch.randn(num_latents, latent_size).to(device=device, non_blocking=non_blocking)
return torch.randn(num_latents, latent_size).to(device=device, non_blocking=non_blocking, **kwargs)


def engine_apply_transform(batch: Any, output: Any, transform: Callable[..., Dict]):
Expand Down
4 changes: 4 additions & 0 deletions monai/engines/workflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -94,6 +94,8 @@ class Workflow(IgniteEngine): # type: ignore[valid-type, misc] # due to optiona
decollate: whether to decollate the batch-first data to a list of data after model computation,
recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`.
default to `True`.
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
`device`, `non_blocking`.

Raises:
TypeError: When ``device`` is not a ``torch.Device``.
Expand Down Expand Up @@ -121,6 +123,7 @@ def __init__(
event_names: Optional[List[Union[str, EventEnum]]] = None,
event_to_attr: Optional[dict] = None,
decollate: bool = True,
to_kwargs: Optional[Dict] = None,
) -> None:
if iteration_update is not None:
super().__init__(iteration_update)
Expand Down Expand Up @@ -166,6 +169,7 @@ def set_sampler_epoch(engine: Engine):
self.prepare_batch = prepare_batch
self.metric_cmp_fn = metric_cmp_fn
self.amp = amp
self.to_kwargs = {} if to_kwargs is None else to_kwargs
self.scaler: Optional[torch.cuda.amp.GradScaler] = None

if event_names is None:
Expand Down
2 changes: 2 additions & 0 deletions tests/test_integration_workflows.py
Original file line number Diff line number Diff line change
Expand Up @@ -148,6 +148,7 @@ def _forward_completed(self, engine):
metric_cmp_fn=lambda cur, prev: cur >= prev, # if greater or equal, treat as new best metric
val_handlers=val_handlers,
amp=bool(amp),
to_kwargs={"memory_format": torch.preserve_format},
)

train_postprocessing = Compose(
Expand Down Expand Up @@ -202,6 +203,7 @@ def _model_completed(self, engine):
train_handlers=train_handlers,
amp=bool(amp),
optim_set_to_none=True,
to_kwargs={"memory_format": torch.preserve_format},
)
trainer.run()

Expand Down
1 change: 1 addition & 0 deletions tests/test_integration_workflows_gan.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,6 +117,7 @@ def generator_loss(gen_images):
latent_shape=latent_size,
key_train_metric=key_train_metric,
train_handlers=train_handlers,
to_kwargs={"memory_format": torch.preserve_format, "dtype": torch.float32},
)
trainer.run()

Expand Down