Skip to content

Commit

Permalink
Add sample_std parameter to RandGaussianNoise. (#7492)
Browse files Browse the repository at this point in the history
Fixes issue #7425

### Description

Add a `sample_std` parameter to `RandGaussianNoise` and
`RandGaussianNoised`. When True, the Gaussian's standard deviation is
sampled uniformly from 0 to std (i.e., what is currently done). When
False, the noise's standard deviation is non-random and set to std. The
default for sample_std would be True for backwards compatibility.

Changes were based on RandRicianNoise which already has a `sample_std`
parameter and is similar to RandGaussianNoise in concept and
implementation.

### Types of changes
<!--- Put an `x` in all the boxes that apply, and remove the not
applicable items -->
- [x] Non-breaking change (fix or new feature that would not break
existing functionality).
- [x] New tests added to cover the changes.
- [ ] Integration tests passed locally by running `./runtests.sh -f -u
--net --coverage`.
- [x] Quick tests passed locally by running `./runtests.sh --quick
--unittests --disttests`.
- [x] In-line docstrings updated.
- [x] Documentation updated, tested `make html` command in the `docs/`
folder.

---------

Signed-off-by: Timothy Baker <bakertim@umich.edu>
  • Loading branch information
bakert1 authored Feb 26, 2024
1 parent 20512d3 commit 7cfa2c9
Show file tree
Hide file tree
Showing 4 changed files with 32 additions and 15 deletions.
15 changes: 12 additions & 3 deletions monai/transforms/intensity/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,24 +91,33 @@ class RandGaussianNoise(RandomizableTransform):
mean: Mean or “centre” of the distribution.
std: Standard deviation (spread) of distribution.
dtype: output data type, if None, same as input image. defaults to float32.
sample_std: If True, sample the spread of the Gaussian distribution uniformly from 0 to std.
"""

backend = [TransformBackends.TORCH, TransformBackends.NUMPY]

def __init__(self, prob: float = 0.1, mean: float = 0.0, std: float = 0.1, dtype: DtypeLike = np.float32) -> None:
def __init__(
self,
prob: float = 0.1,
mean: float = 0.0,
std: float = 0.1,
dtype: DtypeLike = np.float32,
sample_std: bool = True,
) -> None:
RandomizableTransform.__init__(self, prob)
self.mean = mean
self.std = std
self.dtype = dtype
self.noise: np.ndarray | None = None
self.sample_std = sample_std

def randomize(self, img: NdarrayOrTensor, mean: float | None = None) -> None:
super().randomize(None)
if not self._do_transform:
return None
rand_std = self.R.uniform(0, self.std)
noise = self.R.normal(self.mean if mean is None else mean, rand_std, size=img.shape)
std = self.R.uniform(0, self.std) if self.sample_std else self.std
noise = self.R.normal(self.mean if mean is None else mean, std, size=img.shape)
# noise is float64 array, convert to the output dtype to save memory
self.noise, *_ = convert_data_type(noise, dtype=self.dtype)

Expand Down
6 changes: 4 additions & 2 deletions monai/transforms/intensity/dictionary.py
Original file line number Diff line number Diff line change
Expand Up @@ -172,7 +172,7 @@
class RandGaussianNoised(RandomizableTransform, MapTransform):
"""
Dictionary-based version :py:class:`monai.transforms.RandGaussianNoise`.
Add Gaussian noise to image. This transform assumes all the expected fields have same shape, if want to add
Add Gaussian noise to image. This transform assumes all the expected fields have same shape, if you want to add
different noise for every field, please use this transform separately.
Args:
Expand All @@ -183,6 +183,7 @@ class RandGaussianNoised(RandomizableTransform, MapTransform):
std: Standard deviation (spread) of distribution.
dtype: output data type, if None, same as input image. defaults to float32.
allow_missing_keys: don't raise exception if key is missing.
sample_std: If True, sample the spread of the Gaussian distribution uniformly from 0 to std.
"""

backend = RandGaussianNoise.backend
Expand All @@ -195,10 +196,11 @@ def __init__(
std: float = 0.1,
dtype: DtypeLike = np.float32,
allow_missing_keys: bool = False,
sample_std: bool = True,
) -> None:
MapTransform.__init__(self, keys, allow_missing_keys)
RandomizableTransform.__init__(self, prob)
self.rand_gaussian_noise = RandGaussianNoise(mean=mean, std=std, prob=1.0, dtype=dtype)
self.rand_gaussian_noise = RandGaussianNoise(mean=mean, std=std, prob=1.0, dtype=dtype, sample_std=sample_std)

def set_random_state(
self, seed: int | None = None, state: np.random.RandomState | None = None
Expand Down
12 changes: 7 additions & 5 deletions tests/test_rand_gaussian_noise.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,22 +22,24 @@

TESTS = []
for p in TEST_NDARRAYS:
TESTS.append(("test_zero_mean", p, 0, 0.1))
TESTS.append(("test_non_zero_mean", p, 1, 0.5))
TESTS.append(("test_zero_mean", p, 0, 0.1, True))
TESTS.append(("test_non_zero_mean", p, 1, 0.5, True))
TESTS.append(("test_no_sample_std", p, 1, 0.5, False))


class TestRandGaussianNoise(NumpyImageTestCase2D):

@parameterized.expand(TESTS)
def test_correct_results(self, _, im_type, mean, std):
def test_correct_results(self, _, im_type, mean, std, sample_std):
seed = 0
gaussian_fn = RandGaussianNoise(prob=1.0, mean=mean, std=std)
gaussian_fn = RandGaussianNoise(prob=1.0, mean=mean, std=std, sample_std=sample_std)
gaussian_fn.set_random_state(seed)
im = im_type(self.imt)
noised = gaussian_fn(im)
np.random.seed(seed)
np.random.random()
expected = self.imt + np.random.normal(mean, np.random.uniform(0, std), size=self.imt.shape)
_std = np.random.uniform(0, std) if sample_std else std
expected = self.imt + np.random.normal(mean, _std, size=self.imt.shape)
if isinstance(noised, torch.Tensor):
noised = noised.cpu()
np.testing.assert_allclose(expected, noised, atol=1e-5)
Expand Down
14 changes: 9 additions & 5 deletions tests/test_rand_gaussian_noised.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,24 +22,28 @@

TESTS = []
for p in TEST_NDARRAYS:
TESTS.append(["test_zero_mean", p, ["img1", "img2"], 0, 0.1])
TESTS.append(["test_non_zero_mean", p, ["img1", "img2"], 1, 0.5])
TESTS.append(["test_zero_mean", p, ["img1", "img2"], 0, 0.1, True])
TESTS.append(["test_non_zero_mean", p, ["img1", "img2"], 1, 0.5, True])
TESTS.append(["test_no_sample_std", p, ["img1", "img2"], 1, 0.5, False])

seed = 0


class TestRandGaussianNoised(NumpyImageTestCase2D):

@parameterized.expand(TESTS)
def test_correct_results(self, _, im_type, keys, mean, std):
gaussian_fn = RandGaussianNoised(keys=keys, prob=1.0, mean=mean, std=std, dtype=np.float64)
def test_correct_results(self, _, im_type, keys, mean, std, sample_std):
gaussian_fn = RandGaussianNoised(
keys=keys, prob=1.0, mean=mean, std=std, dtype=np.float64, sample_std=sample_std
)
gaussian_fn.set_random_state(seed)
im = im_type(self.imt)
noised = gaussian_fn({k: im for k in keys})
np.random.seed(seed)
# simulate the randomize() of transform
np.random.random()
noise = np.random.normal(mean, np.random.uniform(0, std), size=self.imt.shape)
_std = np.random.uniform(0, std) if sample_std else std
noise = np.random.normal(mean, _std, size=self.imt.shape)
for k in keys:
expected = self.imt + noise
if isinstance(noised[k], torch.Tensor):
Expand Down

0 comments on commit 7cfa2c9

Please sign in to comment.