-
Notifications
You must be signed in to change notification settings - Fork 149
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add HRDR model * refactor code * refactor code to use save and load function
- Loading branch information
Showing
8 changed files
with
655 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .recom_hrdr import HRDR |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,239 @@ | ||
import numpy as np | ||
import tensorflow as tf | ||
from tensorflow import keras | ||
from tensorflow.keras import layers, initializers | ||
from tensorflow.python.keras.preprocessing.sequence import pad_sequences | ||
|
||
from ...utils import get_rng | ||
from ...utils.init_utils import uniform | ||
from ..narre.narre import TextProcessor, AddGlobalBias | ||
|
||
|
||
def get_data(batch_ids, train_set, max_text_length, by="user", max_num_review=32): | ||
batch_reviews, batch_num_reviews = [], [] | ||
review_group = ( | ||
train_set.review_text.user_review | ||
if by == "user" | ||
else train_set.review_text.item_review | ||
) | ||
for idx in batch_ids: | ||
review_ids = [] | ||
for inc, (jdx, review_idx) in enumerate(review_group[idx].items()): | ||
if max_num_review is not None and inc == max_num_review: | ||
break | ||
review_ids.append(review_idx) | ||
reviews = train_set.review_text.batch_seq( | ||
review_ids, max_length=max_text_length | ||
) | ||
batch_reviews.append(reviews) | ||
batch_num_reviews.append(len(reviews)) | ||
batch_reviews = pad_sequences(batch_reviews, maxlen=max_num_review, padding="post") | ||
batch_num_reviews = np.array(batch_num_reviews).astype(np.int32) | ||
batch_ratings = ( | ||
np.zeros((len(batch_ids), train_set.num_items), dtype=np.float32) | ||
if by == "user" | ||
else np.zeros((len(batch_ids), train_set.num_users), dtype=np.float32) | ||
) | ||
rating_group = train_set.user_data if by == "user" else train_set.item_data | ||
for batch_inc, idx in enumerate(batch_ids): | ||
jds, ratings = rating_group[idx] | ||
for jdx, rating in zip(jds, ratings): | ||
batch_ratings[batch_inc, jdx] = rating | ||
return batch_reviews, batch_num_reviews, batch_ratings | ||
|
||
class Model(keras.Model): | ||
def __init__(self, n_users, n_items, n_vocab, global_mean, embedding_matrix, | ||
n_factors=32, embedding_size=100, id_embedding_size=32, | ||
attention_size=16, kernel_sizes=[3], n_filters=64, | ||
n_user_mlp_factors=128, n_item_mlp_factors=128, | ||
dropout_rate=0.5, max_text_length=50): | ||
super().__init__() | ||
self.l_user_review_embedding = layers.Embedding(n_vocab, embedding_size, embeddings_initializer=embedding_matrix, mask_zero=True, name="user_review_embedding") | ||
self.l_item_review_embedding = layers.Embedding(n_vocab, embedding_size, embeddings_initializer=embedding_matrix, mask_zero=True, name="item_review_embedding") | ||
self.l_user_embedding = layers.Embedding(n_users, id_embedding_size, embeddings_initializer="uniform", name="user_embedding") | ||
self.l_item_embedding = layers.Embedding(n_items, id_embedding_size, embeddings_initializer="uniform", name="item_embedding") | ||
self.user_bias = layers.Embedding(n_users, 1, embeddings_initializer=tf.initializers.Constant(0.1), name="user_bias") | ||
self.item_bias = layers.Embedding(n_items, 1, embeddings_initializer=tf.initializers.Constant(0.1), name="item_bias") | ||
self.user_text_processor = TextProcessor(max_text_length, filters=n_filters, kernel_sizes=kernel_sizes, dropout_rate=dropout_rate, name='user_text_processor') | ||
self.item_text_processor = TextProcessor(max_text_length, filters=n_filters, kernel_sizes=kernel_sizes, dropout_rate=dropout_rate, name='item_text_processor') | ||
|
||
self.l_user_mlp = keras.models.Sequential([ | ||
layers.Dense(n_user_mlp_factors, input_dim=n_items, activation="relu"), | ||
layers.Dense(n_user_mlp_factors // 2, activation="relu"), | ||
layers.Dense(n_filters, activation="relu"), | ||
layers.BatchNormalization(), | ||
]) | ||
self.l_item_mlp = keras.models.Sequential([ | ||
layers.Dense(n_item_mlp_factors, input_dim=n_users, activation="relu"), | ||
layers.Dense(n_item_mlp_factors // 2, activation="relu"), | ||
layers.Dense(n_filters, activation="relu"), | ||
layers.BatchNormalization(), | ||
]) | ||
self.a_user = keras.models.Sequential([ | ||
layers.Dense(attention_size, activation="relu", use_bias=True), | ||
layers.Dense(1, activation=None, use_bias=True) | ||
]) | ||
self.user_attention = layers.Softmax(axis=1, name="user_attention") | ||
self.a_item = keras.models.Sequential([ | ||
layers.Dense(attention_size, activation="relu", use_bias=True), | ||
layers.Dense(1, activation=None, use_bias=True) | ||
]) | ||
self.item_attention = layers.Softmax(axis=1, name="item_attention") | ||
self.ou_dropout = layers.Dropout(rate=dropout_rate) | ||
self.oi_dropout = layers.Dropout(rate=dropout_rate) | ||
self.ou = layers.Dense(n_factors, use_bias=True, name="ou") | ||
self.oi = layers.Dense(n_factors, use_bias=True, name="oi") | ||
self.W1 = layers.Dense(1, activation=None, use_bias=False, name="W1") | ||
self.add_global_bias = AddGlobalBias(init_value=global_mean, name="global_bias") | ||
|
||
def call(self, inputs, training=False): | ||
i_user_id, i_item_id, i_user_rating, i_user_review, i_user_num_reviews, i_item_rating, i_item_review, i_item_num_reviews = inputs | ||
user_review_h = self.user_text_processor(self.l_user_review_embedding(i_user_review), training=training) | ||
item_review_h = self.item_text_processor(self.l_item_review_embedding(i_item_review), training=training) | ||
user_rating_h = self.l_user_mlp(i_user_rating) | ||
item_rating_h = self.l_item_mlp(i_item_rating) | ||
a_user = self.a_user( | ||
tf.multiply( | ||
user_review_h, | ||
tf.expand_dims(user_rating_h, 1) | ||
) | ||
) | ||
a_user_masking = tf.expand_dims(tf.sequence_mask(tf.reshape(i_user_num_reviews, [-1]), maxlen=i_user_review.shape[1]), -1) | ||
user_attention = self.user_attention(a_user, a_user_masking) | ||
a_item = self.a_item( | ||
tf.multiply( | ||
item_review_h, | ||
tf.expand_dims(item_rating_h, 1) | ||
) | ||
) | ||
a_item_masking = tf.expand_dims(tf.sequence_mask(tf.reshape(i_item_num_reviews, [-1]), maxlen=i_item_review.shape[1]), -1) | ||
item_attention = self.item_attention(a_item, a_item_masking) | ||
ou = tf.multiply(user_attention, user_review_h) | ||
ou = tf.reduce_sum(ou, 1) | ||
if training: | ||
ou = self.ou_dropout(ou, training=training) | ||
ou = self.ou(ou) | ||
oi = tf.multiply(item_attention, item_review_h) | ||
oi = tf.reduce_sum(oi, 1) | ||
if training: | ||
oi = self.oi_dropout(oi, training=training) | ||
oi = self.oi(oi) | ||
pu = tf.concat([ | ||
user_rating_h, | ||
ou, | ||
self.l_user_embedding(i_user_id) | ||
], axis=-1) | ||
qi = tf.concat([ | ||
item_rating_h, | ||
oi, | ||
self.l_item_embedding(i_item_id) | ||
], axis=-1) | ||
h0 = tf.multiply(pu, qi) | ||
r = self.add_global_bias( | ||
tf.add_n([ | ||
self.W1(h0), | ||
self.user_bias(i_user_id), | ||
self.item_bias(i_item_id) | ||
]) | ||
) | ||
return r | ||
|
||
class HRDRModel: | ||
def __init__(self, n_users, n_items, vocab, global_mean, | ||
n_factors=32, embedding_size=100, id_embedding_size=32, | ||
attention_size=16, kernel_sizes=[3], n_filters=64, | ||
n_user_mlp_factors=128, n_item_mlp_factors=128, | ||
dropout_rate=0.5, max_text_length=50, max_num_review=32, | ||
pretrained_word_embeddings=None, verbose=False, seed=None): | ||
self.n_users = n_users | ||
self.n_items = n_items | ||
self.n_vocab = vocab.size | ||
self.global_mean = global_mean | ||
self.n_factors = n_factors | ||
self.embedding_size = embedding_size | ||
self.id_embedding_size = id_embedding_size | ||
self.attention_size = attention_size | ||
self.kernel_sizes = kernel_sizes | ||
self.n_filters = n_filters | ||
self.n_user_mlp_factors = n_user_mlp_factors | ||
self.n_item_mlp_factors = n_item_mlp_factors | ||
self.dropout_rate = dropout_rate | ||
self.max_text_length = max_text_length | ||
self.max_num_review = max_num_review | ||
self.verbose = verbose | ||
if seed is not None: | ||
self.rng = get_rng(seed) | ||
tf.random.set_seed(seed) | ||
|
||
embedding_matrix = uniform(shape=(self.n_vocab, self.embedding_size), low=-0.5, high=0.5, random_state=self.rng) | ||
embedding_matrix[:4, :] = np.zeros((4, self.embedding_size)) | ||
if pretrained_word_embeddings is not None: | ||
oov_count = 0 | ||
for word, idx in vocab.tok2idx.items(): | ||
embedding_vector = pretrained_word_embeddings.get(word) | ||
if embedding_vector is not None: | ||
embedding_matrix[idx] = embedding_vector | ||
else: | ||
oov_count += 1 | ||
if self.verbose: | ||
print("Number of OOV words: %d" % oov_count) | ||
|
||
embedding_matrix = initializers.Constant(embedding_matrix) | ||
self.graph = Model( | ||
self.n_users, self.n_items, self.n_vocab, self.global_mean, embedding_matrix, | ||
self.n_factors, self.embedding_size, self.id_embedding_size, | ||
self.attention_size, self.kernel_sizes, self.n_filters, | ||
self.n_user_mlp_factors, self.n_item_mlp_factors, | ||
self.dropout_rate, self.max_text_length | ||
) | ||
|
||
def get_weights(self, train_set, batch_size=64): | ||
P = np.zeros((self.n_users, self.n_filters + self.n_factors + self.id_embedding_size)) | ||
Q = np.zeros((self.n_items, self.n_filters + self.n_factors + self.id_embedding_size)) | ||
A = np.zeros((self.n_items, self.max_num_review)) | ||
for batch_users in train_set.user_iter(batch_size, shuffle=False): | ||
i_user_review, i_user_num_reviews, i_user_rating = get_data(batch_users, train_set, self.max_text_length, by='user', max_num_review=self.max_num_review) | ||
user_review_embedding = self.graph.l_user_review_embedding(i_user_review) | ||
user_review_h = self.graph.user_text_processor(user_review_embedding, training=False) | ||
user_rating_h = self.graph.l_user_mlp(i_user_rating) | ||
a_user = self.graph.a_user( | ||
tf.multiply( | ||
user_review_h, | ||
tf.expand_dims(user_rating_h, 1) | ||
) | ||
) | ||
a_user_masking = tf.expand_dims(tf.sequence_mask(tf.reshape(i_user_num_reviews, [-1]), maxlen=i_user_review.shape[1]), -1) | ||
user_attention = self.graph.user_attention(a_user, a_user_masking) | ||
ou = self.graph.ou(tf.reduce_sum(tf.multiply(user_attention, user_review_h), 1)) | ||
pu = tf.concat([ | ||
user_rating_h, | ||
ou, | ||
self.graph.l_user_embedding(batch_users) | ||
], axis=-1) | ||
P[batch_users] = pu.numpy() | ||
for batch_items in train_set.item_iter(batch_size, shuffle=False): | ||
i_item_review, i_item_num_reviews, i_item_rating = get_data(batch_items, train_set, self.max_text_length, by='item', max_num_review=self.max_num_review) | ||
item_review_embedding = self.graph.l_item_review_embedding(i_item_review) | ||
item_review_h = self.graph.item_text_processor(item_review_embedding, training=False) | ||
item_rating_h = self.graph.l_item_mlp(i_item_rating) | ||
a_item = self.graph.a_item( | ||
tf.multiply( | ||
item_review_h, | ||
tf.expand_dims(item_rating_h, 1) | ||
) | ||
) | ||
a_item_masking = tf.expand_dims(tf.sequence_mask(tf.reshape(i_item_num_reviews, [-1]), maxlen=i_item_review.shape[1]), -1) | ||
item_attention = self.graph.item_attention(a_item, a_item_masking) | ||
oi = self.graph.oi(tf.reduce_sum(tf.multiply(item_attention, item_review_h), 1)) | ||
qi = tf.concat([ | ||
item_rating_h, | ||
oi, | ||
self.graph.l_item_embedding(batch_items) | ||
], axis=-1) | ||
Q[batch_items] = qi.numpy() | ||
A[batch_items, :item_attention.shape[1]] = item_attention.numpy().reshape(item_attention.shape[:2]) | ||
W1 = self.graph.W1.get_weights()[0] | ||
bu = self.graph.user_bias.get_weights()[0] | ||
bi = self.graph.item_bias.get_weights()[0] | ||
mu = self.graph.add_global_bias.get_weights()[0][0] | ||
return P, Q, W1, bu, bi, mu, A |
Oops, something went wrong.