-
Notifications
You must be signed in to change notification settings - Fork 112
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
74e82ee
commit d3bf205
Showing
1 changed file
with
82 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,86 @@ | ||
""" | ||
Copied from RT-DETR (https://github.com/lyuwenyu/RT-DETR) | ||
Copyright(c) 2023 lyuwenyu. All Rights Reserved. | ||
Copyright (c) 2024 The D-FINE Authors. All Rights Reserved. | ||
""" | ||
|
||
import openvino | ||
from openvino.runtime import Core | ||
import cv2 | ||
import numpy as np | ||
|
||
# please reference: https://github.com/guojin-yan/RT-DETR-OpenVINO | ||
|
||
class OvInfer: | ||
def __init__(self, model_path, device_name="AUTO"): | ||
self.resized_image = None | ||
self.ratio = None | ||
self.resize_image = None | ||
self.ori_image = None | ||
self.device = device_name | ||
self.model_path = model_path | ||
self.core = Core() | ||
self.available_device = self.core.available_devices | ||
self.compile_model = self.core.compile_model(self.model_path, device_name) | ||
self.target_size = [self.compile_model.inputs[0].get_partial_shape()[2].get_length(), | ||
self.compile_model.inputs[0].get_partial_shape()[3].get_length()] | ||
self.query_num = self.compile_model.outputs[0].get_partial_shape()[1].get_length() | ||
|
||
def infer(self, inputs: dict): | ||
infer_request = self.compile_model.create_infer_request() | ||
for input_name, input_data in inputs.items(): | ||
input_tensor = openvino.Tensor(input_data) | ||
infer_request.set_tensor(input_name, input_tensor) | ||
infer_request.infer() | ||
outputs = {'labels': infer_request.get_tensor('labels').data, 'boxes': infer_request.get_tensor('boxes').data, | ||
'scores': infer_request.get_tensor('scores').data} | ||
return outputs | ||
|
||
def process_image(self, ori_image, keep_ratio: bool): | ||
self.ori_image = ori_image | ||
h, w = ori_image.shape[:2] | ||
if keep_ratio: | ||
r = min(self.target_size[0] / h, self.target_size[1] / w) | ||
self.ratio = r | ||
new_w = int(w * r) | ||
new_h = int(h * r) | ||
temp_image = cv2.resize(ori_image, (new_w, new_h), interpolation=cv2.INTER_LINEAR) | ||
resized_image = np.full((self.target_size[0], self.target_size[1], 3), 114, dtype=temp_image.dtype) | ||
resized_image[:new_h, :new_w, :] = temp_image | ||
self.resized_image = resized_image | ||
else: | ||
self.resized_image = cv2.resize(ori_image, self.target_size, interpolation=cv2.INTER_LINEAR) | ||
blob_image = cv2.dnn.blobFromImage(self.resized_image, 1.0 / 255.0) | ||
orig_size = np.array([self.resized_image.shape[0], self.resized_image.shape[1]]).reshape(1, 2) | ||
inputs = { | ||
'images': blob_image, | ||
'orig_target_sizes': orig_size, | ||
} | ||
return inputs | ||
|
||
def get_available_device(self): | ||
return self.available_device | ||
|
||
def draw_and_save_image(self, infer_result, image_path, score_threshold=0.6): | ||
draw_image = self.ori_image | ||
scores = infer_result['scores'] | ||
labels = infer_result['labels'] | ||
boxes = infer_result['boxes'] | ||
for i in range(self.query_num): | ||
if scores[0, i] > score_threshold: | ||
cx = boxes[0, i, 0] * self.ratio | ||
cy = boxes[0, i, 1] * self.ratio | ||
bx = boxes[0, i, 2] * self.ratio | ||
by = boxes[0, i, 3] * self.ratio | ||
cv2.rectangle(draw_image, (int(cx), int(cy), int(bx - cx), int(by - cy)), (255, 0, 0), 1) | ||
cv2.imwrite(image_path, draw_image) | ||
|
||
|
||
if __name__ == '__main__': | ||
import argparse | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('-image', '--image', type=str, required=True) | ||
parser.add_argument('-ov_model', '--ov_model', type=str, required=True) | ||
args = parser.parse_args() | ||
img = cv2.imread(args.image) | ||
mOvInfer = OvInfer(args.ov_model) | ||
inputs = mOvInfer.process_image(img, True) | ||
outputs = mOvInfer.infer(inputs) | ||
mOvInfer.draw_and_save_image(outputs, 'openvino_result.jpg') |