A generic, machine learning-based revision scoring system designed to be used to automatically differentiate damage from productive contributory behavior on Wikipedia.
Scoring models:
>>> from mw.api import Session >>> >>> from revscoring.extractors import APIExtractor >>> from revscoring.languages import english >>> from revscoring.scorers import MLScorerModel >>> >>> api_session = Session("https://en.wikipedia.org/w/api.php") Sending requests with default User-Agent. Set 'user_agent' on api.Session to quiet this message. >>> extractor = APIExtractor(api_session, english) >>> >>> filename = "models/reverts.halfak_mix.trained.model" >>> model = MLScorerModel.load(open(filename, 'rb')) >>> >>> rev_ids = [105, 642215410, 638307884] >>> feature_values = [extractor.extract(id, model.features) for id in rev_ids] >>> scores = model.score(feature_values, probabilities=True) >>> for rev_id, score in zip(rev_ids, scores): ... print("{0}: {1}".format(rev_id, score)) ... 105: {'probabilities': array([ 0.96441465, 0.03558535]), 'prediction': False} 642215410: {'probabilities': array([ 0.75884553, 0.24115447]), 'prediction': True} 638307884: {'probabilities': array([ 0.98441738, 0.01558262]), 'prediction': False}
Feature extraction:
>>> from mw.api import Session >>> >>> from revscoring.extractors import APIExtractor >>> from revscoring.features import diff, parent_revision, revision, user >>> >>> api_extractor = APIExtractor(Session("https://en.wikipedia.org/w/api.php")) Sending requests with default User-Agent. Set 'user_agent' on api.Session to quiet this message. >>> >>> features = [revision.day_of_week, ... revision.hour_of_day, ... revision.has_custom_comment, ... parent_revision.bytes_changed, ... diff.chars_added, ... user.age, ... user.is_anon, ... user.is_bot] >>> >>> values = api_extractor.extract( ... 624577024, ... features ... ) >>> for feature, value in zip(features, values): ... print("{0}: {1}".format(feature, value)) ... <revision.day_of_week>: 6 <revision.hour_of_day>: 19 <revision.has_custom_comment>: True <(revision.bytes - parent_revision.bytes_changed)>: 3 <diff.chars_added>: 8 <user.age>: 71821407 <user.is_anon>: False <user.is_bot>: False
In order to use this, you need to install a few packages first:
You might need to install some other dependencies depending on your operating system. Try using the packages,
sudo apt-get install python3-dev python3-numpy python3-scipy g++ gfortran liblapack-dev libopenblas-dev myspell-pt myspell-fa myspell-en-au myspell-en-gb myspell-en-us myspell-en-za myspell-fr myspell-es hunspell-vi myspell-he
If you're on Ubuntu, you might also be able to install an Indonesian dictionary:
sudo apt-get install aspell-id
Virtualenv users, please note that you'll have to use the --system-site-packages option if you install scipy and numpy via apt-get. You can also use pip3 within your virtualenv.
If you need the Python package installer,
sudo easy_install3 pip
Then, install this module,
pip3 install --user revscoring
You'll need to download NLTK data in order to make use of language features.
python3 -m nltk.downloader wordnet omw stopwords
- Aaron Halfaker:
- Helder:
- Adam Roses Wight: