Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Draft][Capture] Allow higher order primitives to accept dynamically shaped arrays #6786

Draft
wants to merge 5 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions pennylane/capture/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -170,6 +170,7 @@ def _(*args, **kwargs):
)
from .flatfn import FlatFn
from .make_plxpr import make_plxpr, run_autograph
from .dynamic_shapes import determine_abstracted_axes

# by defining this here, we avoid
# E0611: No name 'AbstractOperator' in module 'pennylane.capture' (no-name-in-module)
Expand Down
48 changes: 38 additions & 10 deletions pennylane/capture/base_interpreter.py
Original file line number Diff line number Diff line change
Expand Up @@ -382,12 +382,15 @@ def handle_ctrl_transform(self, *invals, n_control, jaxpr, control_values, work_


@PlxprInterpreter.register_primitive(for_loop_prim)
def handle_for_loop(self, start, stop, step, *args, jaxpr_body_fn, consts_slice, args_slice):
def handle_for_loop(
self, start, stop, step, *args, jaxpr_body_fn, consts_slice, args_slice, abstract_shapes_slice
):
"""Handle a for loop primitive."""
init_state = args[args_slice]
abstract_shapes = args[abstract_shapes_slice]

new_jaxpr_body_fn = jaxpr_to_jaxpr(
copy(self), jaxpr_body_fn, args[consts_slice], start, *init_state
copy(self), jaxpr_body_fn, args[consts_slice], *abstract_shapes, start, *init_state
)

return for_loop_prim.bind(
Expand All @@ -398,6 +401,7 @@ def handle_for_loop(self, start, stop, step, *args, jaxpr_body_fn, consts_slice,
jaxpr_body_fn=new_jaxpr_body_fn,
consts_slice=consts_slice,
args_slice=args_slice,
abstract_shapes_slice=abstract_shapes_slice,
)


Expand All @@ -421,15 +425,27 @@ def handle_cond(self, *invals, jaxpr_branches, consts_slices, args_slice):

@PlxprInterpreter.register_primitive(while_loop_prim)
def handle_while_loop(
self, *invals, jaxpr_body_fn, jaxpr_cond_fn, body_slice, cond_slice, args_slice
self,
*invals,
jaxpr_body_fn,
jaxpr_cond_fn,
body_slice,
cond_slice,
args_slice,
abstract_shapes_slice,
):
"""Handle a while loop primitive."""
consts_body = invals[body_slice]
consts_cond = invals[cond_slice]
init_state = invals[args_slice]
abstract_shapes = invals[abstract_shapes_slice]

new_jaxpr_body_fn = jaxpr_to_jaxpr(copy(self), jaxpr_body_fn, consts_body, *init_state)
new_jaxpr_cond_fn = jaxpr_to_jaxpr(copy(self), jaxpr_cond_fn, consts_cond, *init_state)
new_jaxpr_body_fn = jaxpr_to_jaxpr(
copy(self), jaxpr_body_fn, consts_body, *abstract_shapes, *init_state
)
new_jaxpr_cond_fn = jaxpr_to_jaxpr(
copy(self), jaxpr_cond_fn, consts_cond, *abstract_shapes, *init_state
)

return while_loop_prim.bind(
*invals,
Expand All @@ -438,6 +454,7 @@ def handle_while_loop(
body_slice=body_slice,
cond_slice=cond_slice,
args_slice=args_slice,
abstract_shapes_slice=abstract_shapes_slice,
)


Expand Down Expand Up @@ -479,16 +496,24 @@ def handle_jacobian(self, *invals, jaxpr, n_consts, **params):


def flatten_while_loop(
self, *invals, jaxpr_body_fn, jaxpr_cond_fn, body_slice, cond_slice, args_slice
self,
*invals,
jaxpr_body_fn,
jaxpr_cond_fn,
body_slice,
cond_slice,
args_slice,
abstract_shapes_slice,
):
"""Handle the while loop by a flattened python strategy."""
consts_body = invals[body_slice]
consts_cond = invals[cond_slice]
init_state = invals[args_slice]
abstract_shapes_slice = invals[abstract_shapes_slice]

fn_res = init_state
while copy(self).eval(jaxpr_cond_fn, consts_cond, *fn_res)[0]:
fn_res = copy(self).eval(jaxpr_body_fn, consts_body, *fn_res)
while copy(self).eval(jaxpr_cond_fn, consts_cond, *abstract_shapes_slice, *fn_res)[0]:
fn_res = copy(self).eval(jaxpr_body_fn, consts_body, *abstract_shapes_slice, *fn_res)

return fn_res

Expand All @@ -512,14 +537,17 @@ def flattened_cond(self, *invals, jaxpr_branches, consts_slices, args_slice):
FlattenedHigherOrderPrimitives[cond_prim] = flattened_cond


def flattened_for(self, start, stop, step, *invals, jaxpr_body_fn, consts_slice, args_slice):
def flattened_for(
self, start, stop, step, *invals, jaxpr_body_fn, consts_slice, args_slice, abstract_shapes_slice
):
"""Handle the for loop by a flattened python strategy."""
consts = invals[consts_slice]
init_state = invals[args_slice]
abstract_shapes = invals[abstract_shapes_slice]

res = init_state
for i in range(start, stop, step):
res = copy(self).eval(jaxpr_body_fn, consts, i, *res)
res = copy(self).eval(jaxpr_body_fn, consts, *abstract_shapes, i, *res)

return res

Expand Down
51 changes: 51 additions & 0 deletions pennylane/capture/dynamic_shapes.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
# Copyright 2025 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

# http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contains a utility for handling inputs with dynamically shaped arrays.
"""
from string import ascii_lowercase

has_jax = True
try:
import jax
except ImportError:
has_jax = False


def determine_abstracted_axes(args, structure=None):
"""Computed the abstracted axes and extracing the abstract shapes from the arguments."""
if not has_jax:
raise ImportError("jax must be installed to use determine_abstracted_axes")
if not jax.config.jax_dynamic_shapes:
return None, tuple()
if structure is None:
args, structure = jax.tree_util.tree_flatten(args)
abstracted_axes = []
abstract_shapes = []
for l in args:
l_shape = []
for s in getattr(l, "shape", ()):
if isinstance(s, int): # not abstract
l_shape.append(())
else:
l_shape.append(ascii_lowercase[len(abstract_shapes)])
if all(s is not x for x in abstract_shapes):
# not already added
abstract_shapes.append(s)
abstracted_axes.append(tuple(l_shape))

if not abstract_shapes:
return None, ()
abstracted_axes = jax.tree_util.tree_unflatten(structure, abstracted_axes)
return abstracted_axes, abstract_shapes
Loading