Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add error rate measuring script #834

Merged
merged 1 commit into from
Apr 19, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 38 additions & 5 deletions fluid/DeepASR/infer_by_ckpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
from data_utils.util import lodtensor_to_ndarray
from model_utils.model import stacked_lstmp_model
from data_utils.util import split_infer_result
from tools.error_rate import char_errors


def parse_args():
Expand Down Expand Up @@ -86,6 +87,11 @@ def parse_args():
type=str,
default='data/infer_label.lst',
help='The label list path for inference. (default: %(default)s)')
parser.add_argument(
'--ref_txt',
type=str,
default='data/text.test',
help='The reference text for decoding. (default: %(default)s)')
parser.add_argument(
'--checkpoint',
type=str,
Expand All @@ -111,6 +117,11 @@ def parse_args():
type=float,
default=0.2,
help="Scaling factor for acoustic likelihoods. (default: %(default)f)")
parser.add_argument(
'--target_trans',
type=str,
default="./decoder/target_trans.txt",
help="The path to target transcription. (default: %(default)s)")
args = parser.parse_args()
return args

Expand All @@ -122,6 +133,18 @@ def print_arguments(args):
print('------------------------------------------------')


def get_trg_trans(args):
trans_dict = {}
with open(args.target_trans) as trg_trans:
line = trg_trans.readline()
while line:
items = line.strip().split()
key = items[0]
trans_dict[key] = ''.join(items[1:])
line = trg_trans.readline()
return trans_dict


def infer_from_ckpt(args):
"""Inference by using checkpoint."""

Expand All @@ -145,6 +168,7 @@ def infer_from_ckpt(args):
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())

trg_trans = get_trg_trans(args)
# load checkpoint.
fluid.io.load_persistables(exe, args.checkpoint)

Expand All @@ -166,11 +190,12 @@ def infer_from_ckpt(args):
args.infer_label_lst)
infer_data_reader.set_transformers(ltrans)
infer_costs, infer_accs = [], []
total_edit_dist, total_ref_len = 0.0, 0
for batch_id, batch_data in enumerate(
infer_data_reader.batch_iterator(args.batch_size,
args.minimum_batch_size)):
# load_data
(features, labels, lod) = batch_data
(features, labels, lod, name_lst) = batch_data
feature_t.set(features, place)
feature_t.set_lod([lod])
label_t.set(labels, place)
Expand All @@ -186,11 +211,19 @@ def infer_from_ckpt(args):

probs, lod = lodtensor_to_ndarray(results[0])
infer_batch = split_infer_result(probs, lod)
for index, sample in enumerate(infer_batch):
key = "utter#%d" % (batch_id * args.batch_size + index)
print(key, ": ", decoder.decode(key, sample).encode("utf8"), "\n")

print(np.mean(infer_costs), np.mean(infer_accs))
for index, sample in enumerate(infer_batch):
key = name_lst[index]
ref = trg_trans[key]
hyp = decoder.decode(key, sample)
edit_dist, ref_len = char_errors(ref.decode("utf8"), hyp)
total_edit_dist += edit_dist
total_ref_len += ref_len
print(key + "|Ref:", ref)
print(key + "|Hyp:", hyp.encode("utf8"))
print("Instance CER: ", edit_dist / ref_len)

print("Total CER = %f" % (total_edit_dist / total_ref_len))


if __name__ == '__main__':
Expand Down
182 changes: 182 additions & 0 deletions fluid/DeepASR/tools/error_rate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,182 @@
# -*- coding: utf-8 -*-
"""This module provides functions to calculate error rate in different level.
e.g. wer for word-level, cer for char-level.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np


def _levenshtein_distance(ref, hyp):
"""Levenshtein distance is a string metric for measuring the difference
between two sequences. Informally, the levenshtein disctance is defined as
the minimum number of single-character edits (substitutions, insertions or
deletions) required to change one word into the other. We can naturally
extend the edits to word level when calculate levenshtein disctance for
two sentences.
"""
m = len(ref)
n = len(hyp)

# special case
if ref == hyp:
return 0
if m == 0:
return n
if n == 0:
return m

if m < n:
ref, hyp = hyp, ref
m, n = n, m

# use O(min(m, n)) space
distance = np.zeros((2, n + 1), dtype=np.int32)

# initialize distance matrix
for j in xrange(n + 1):
distance[0][j] = j

# calculate levenshtein distance
for i in xrange(1, m + 1):
prev_row_idx = (i - 1) % 2
cur_row_idx = i % 2
distance[cur_row_idx][0] = i
for j in xrange(1, n + 1):
if ref[i - 1] == hyp[j - 1]:
distance[cur_row_idx][j] = distance[prev_row_idx][j - 1]
else:
s_num = distance[prev_row_idx][j - 1] + 1
i_num = distance[cur_row_idx][j - 1] + 1
d_num = distance[prev_row_idx][j] + 1
distance[cur_row_idx][j] = min(s_num, i_num, d_num)

return distance[m % 2][n]


def word_errors(reference, hypothesis, ignore_case=False, delimiter=' '):
"""Compute the levenshtein distance between reference sequence and
hypothesis sequence in word-level.
:param reference: The reference sentence.
:type reference: basestring
:param hypothesis: The hypothesis sentence.
:type hypothesis: basestring
:param ignore_case: Whether case-sensitive or not.
:type ignore_case: bool
:param delimiter: Delimiter of input sentences.
:type delimiter: char
:return: Levenshtein distance and word number of reference sentence.
:rtype: list
"""
if ignore_case == True:
reference = reference.lower()
hypothesis = hypothesis.lower()

ref_words = filter(None, reference.split(delimiter))
hyp_words = filter(None, hypothesis.split(delimiter))

edit_distance = _levenshtein_distance(ref_words, hyp_words)
return float(edit_distance), len(ref_words)


def char_errors(reference, hypothesis, ignore_case=False, remove_space=False):
"""Compute the levenshtein distance between reference sequence and
hypothesis sequence in char-level.
:param reference: The reference sentence.
:type reference: basestring
:param hypothesis: The hypothesis sentence.
:type hypothesis: basestring
:param ignore_case: Whether case-sensitive or not.
:type ignore_case: bool
:param remove_space: Whether remove internal space characters
:type remove_space: bool
:return: Levenshtein distance and length of reference sentence.
:rtype: list
"""
if ignore_case == True:
reference = reference.lower()
hypothesis = hypothesis.lower()

join_char = ' '
if remove_space == True:
join_char = ''

reference = join_char.join(filter(None, reference.split(' ')))
hypothesis = join_char.join(filter(None, hypothesis.split(' ')))

edit_distance = _levenshtein_distance(reference, hypothesis)
return float(edit_distance), len(reference)


def wer(reference, hypothesis, ignore_case=False, delimiter=' '):
"""Calculate word error rate (WER). WER compares reference text and
hypothesis text in word-level. WER is defined as:
.. math::
WER = (Sw + Dw + Iw) / Nw
where
.. code-block:: text
Sw is the number of words subsituted,
Dw is the number of words deleted,
Iw is the number of words inserted,
Nw is the number of words in the reference
We can use levenshtein distance to calculate WER. Please draw an attention
that empty items will be removed when splitting sentences by delimiter.
:param reference: The reference sentence.
:type reference: basestring
:param hypothesis: The hypothesis sentence.
:type hypothesis: basestring
:param ignore_case: Whether case-sensitive or not.
:type ignore_case: bool
:param delimiter: Delimiter of input sentences.
:type delimiter: char
:return: Word error rate.
:rtype: float
:raises ValueError: If word number of reference is zero.
"""
edit_distance, ref_len = word_errors(reference, hypothesis, ignore_case,
delimiter)

if ref_len == 0:
raise ValueError("Reference's word number should be greater than 0.")

wer = float(edit_distance) / ref_len
return wer


def cer(reference, hypothesis, ignore_case=False, remove_space=False):
"""Calculate charactor error rate (CER). CER compares reference text and
hypothesis text in char-level. CER is defined as:
.. math::
CER = (Sc + Dc + Ic) / Nc
where
.. code-block:: text
Sc is the number of characters substituted,
Dc is the number of characters deleted,
Ic is the number of characters inserted
Nc is the number of characters in the reference
We can use levenshtein distance to calculate CER. Chinese input should be
encoded to unicode. Please draw an attention that the leading and tailing
space characters will be truncated and multiple consecutive space
characters in a sentence will be replaced by one space character.
:param reference: The reference sentence.
:type reference: basestring
:param hypothesis: The hypothesis sentence.
:type hypothesis: basestring
:param ignore_case: Whether case-sensitive or not.
:type ignore_case: bool
:param remove_space: Whether remove internal space characters
:type remove_space: bool
:return: Character error rate.
:rtype: float
:raises ValueError: If the reference length is zero.
"""
edit_distance, ref_len = char_errors(reference, hypothesis, ignore_case,
remove_space)

if ref_len == 0:
raise ValueError("Length of reference should be greater than 0.")

cer = float(edit_distance) / ref_len
return cer