Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add fluid version of SE-ResNeXt #577

Merged
merged 2 commits into from
Jan 18, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
127 changes: 127 additions & 0 deletions fluid/image_classification/reader.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
import os
import random
import functools
import numpy as np
import paddle.v2 as paddle
from PIL import Image, ImageEnhance

random.seed(0)

_R_MEAN = 123.0
_G_MEAN = 117.0
_B_MEAN = 104.0

DATA_DIM = 224

THREAD = 8
BUF_SIZE = 1024

DATA_DIR = 'ILSVRC2012'
TRAIN_LIST = 'ILSVRC2012/train_list.txt'
TEST_LIST = 'ILSVRC2012/test_list.txt'

img_mean = np.array([_R_MEAN, _G_MEAN, _B_MEAN]).reshape((3, 1, 1))


def resize_short(img, target_size):
percent = float(target_size) / min(img.size[0], img.size[1])
resized_width = int(round(img.size[0] * percent))
resized_height = int(round(img.size[1] * percent))
img = img.resize((resized_width, resized_height), Image.LANCZOS)
return img


def crop_image(img, target_size, center):
width, height = img.size
size = target_size
if center == True:
w_start = (width - size) / 2
h_start = (height - size) / 2
else:
w_start = random.randint(0, width - size)
h_start = random.randint(0, height - size)
w_end = w_start + size
h_end = h_start + size
img = img.crop((w_start, h_start, w_end, h_end))
return img


def distort_color(img):
def random_brightness(img, lower=0.5, upper=1.5):
e = random.uniform(lower, upper)
return ImageEnhance.Brightness(img).enhance(e)

def random_contrast(img, lower=0.5, upper=1.5):
e = random.uniform(lower, upper)
return ImageEnhance.Contrast(img).enhance(e)

def random_color(img, lower=0.5, upper=1.5):
e = random.uniform(lower, upper)
return ImageEnhance.Color(img).enhance(e)

ops = [random_brightness, random_contrast, random_color]
random.shuffle(ops)

img = ops[0](img)
img = ops[1](img)
img = ops[2](img)

return img


def process_image(sample, mode):
img_path = sample[0]

img = Image.open(img_path)
if mode == 'train':
img = resize_short(img, DATA_DIM + 32)
else:
img = resize_short(img, DATA_DIM)
img = crop_image(img, target_size=DATA_DIM, center=(mode != 'train'))
if mode == 'train':
img = distort_color(img)
if random.randint(0, 1) == 1:
img = img.transpose(Image.FLIP_LEFT_RIGHT)

if img.mode != 'RGB':
img = img.convert('RGB')

img = np.array(img).astype('float32').transpose((2, 0, 1))
img -= img_mean

if mode == 'train' or mode == 'test':
return img, sample[1]
elif mode == 'infer':
return img


def _reader_creator(file_list, mode, shuffle=False):
def reader():
with open(file_list) as flist:
lines = [line.strip() for line in flist]
if shuffle:
random.shuffle(lines)
for line in lines:
if mode == 'train' or mode == 'test':
img_path, label = line.split()
img_path = os.path.join(DATA_DIR, img_path)
yield img_path, int(label)
elif mode == 'infer':
img_path = os.path.join(DATA_DIR, line)
yield [img_path]

mapper = functools.partial(process_image, mode=mode)

return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)


def train():
return _reader_creator(TRAIN_LIST, 'train', shuffle=True)


def test():
return _reader_creator(TEST_LIST, 'test', shuffle=False)


def infer(file_list):
return _reader_creator(file_list, 'infer', shuffle=False)
155 changes: 155 additions & 0 deletions fluid/image_classification/se_resnext.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
import os
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import reader


def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1,
act=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) / 2,
groups=groups,
act=None,
bias_attr=False)
return fluid.layers.batch_norm(input=conv, act=act)


def squeeze_excitation(input, num_channels, reduction_ratio):
pool = fluid.layers.pool2d(
input=input, pool_size=0, pool_type='avg', global_pooling=True)
squeeze = fluid.layers.fc(
input=pool, size=num_channels / reduction_ratio, act='relu')
excitation = fluid.layers.fc(
input=squeeze, size=num_channels, act='sigmoid')
scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
return scale


def shortcut(input, ch_out, stride):
ch_in = input.shape[1]
if ch_in != ch_out:
return conv_bn_layer(input, ch_out, 3, stride)
else:
return input


def bottleneck_block(input, num_filters, stride, cardinality, reduction_ratio):
conv0 = conv_bn_layer(
input=input, num_filters=num_filters, filter_size=1, act='relu')
conv1 = conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
groups=cardinality,
act='relu')
conv2 = conv_bn_layer(
input=conv1, num_filters=num_filters * 2, filter_size=1, act=None)
scale = squeeze_excitation(
input=conv2,
num_channels=num_filters * 2,
reduction_ratio=reduction_ratio)

short = shortcut(input, num_filters * 2, stride)

return fluid.layers.elementwise_add(x=short, y=scale, act='relu')


def SE_ResNeXt(input, class_dim, infer=False):
cardinality = 64
reduction_ratio = 16
depth = [3, 8, 36, 3]
num_filters = [128, 256, 512, 1024]

conv = conv_bn_layer(
input=input, num_filters=64, filter_size=3, stride=2, act='relu')
conv = conv_bn_layer(
input=conv, num_filters=64, filter_size=3, stride=1, act='relu')
conv = conv_bn_layer(
input=conv, num_filters=128, filter_size=3, stride=1, act='relu')
conv = fluid.layers.pool2d(
input=conv, pool_size=3, pool_stride=2, pool_type='max')

for block in range(len(depth)):
for i in range(depth[block]):
conv = bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=cardinality,
reduction_ratio=reduction_ratio)

pool = fluid.layers.pool2d(
input=conv, pool_size=0, pool_type='avg', global_pooling=True)
if not infer:
drop = fluid.layers.dropout(x=pool, dropout_prob=0.2)
else:
drop = pool
out = fluid.layers.fc(input=drop, size=class_dim, act='softmax')
return out


def train(learning_rate, batch_size, num_passes, model_save_dir='model'):
class_dim = 1000
image_shape = [3, 224, 224]

image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')

out = SE_ResNeXt(input=image, class_dim=class_dim)

cost = fluid.layers.cross_entropy(input=out, label=label)
avg_cost = fluid.layers.mean(x=cost)

optimizer = fluid.optimizer.Momentum(
learning_rate=learning_rate / batch_size,
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4 * batch_size))
opts = optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=out, label=label)

inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
test_accuracy = fluid.evaluator.Accuracy(input=out, label=label)
test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states
inference_program = fluid.io.get_inference_program(test_target)

place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())

train_reader = paddle.batch(datareader.train(), batch_size=batch_size)
test_reader = paddle.batch(datareader.test(), batch_size=batch_size)
feeder = fluid.DataFeeder(place=place, feed_list=[image, label])

for pass_id in range(num_passes):
accuracy.reset(exe)
for batch_id, data in enumerate(train_reader()):
loss, acc = exe.run(
fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost] + accuracy.metrics)
print("Pass {0}, batch {1}, loss {2}, acc {3}".format(
pass_id, batch_id, loss[0], acc[0]))
pass_acc = accuracy.eval(exe)

test_accuracy.reset(exe)
for data in test_reader():
out, acc = exe.run(
inference_program,
feed=feeder.feed(data),
fetch_list=[avg_cost] + test_accuracy.metrics)
test_pass_acc = test_accuracy.eval(exe)
print("End pass {0}, train_acc {1}, test_acc {2}".format(
pass_id, pass_acc, test_pass_acc))

model_path = os.path.join(model_save_dir, str(pass_id))
fluid.io.save_inference_model(model_path, ['image'], [out], exe)


if __name__ == '__main__':
train(learning_rate=0.1, batch_size=7, num_passes=100)