Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve params tuning strategy for CTC beam search decoder #194

Merged
merged 6 commits into from
Sep 25, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 13 additions & 11 deletions deep_speech_2/examples/librispeech/run_tune.sh
Original file line number Diff line number Diff line change
Expand Up @@ -3,29 +3,31 @@
pushd ../.. > /dev/null

# grid-search for hyper-parameters in language model
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python -u tools/tune.py \
--num_samples=100 \
--num_batches=-1 \
--batch_size=256 \
--trainer_count=8 \
--beam_size=500 \
--num_proc_bsearch=12 \
--num_conv_layers=2 \
--num_rnn_layers=3 \
--rnn_layer_size=2048 \
--num_alphas=14 \
--num_betas=20 \
--alpha_from=0.1 \
--alpha_to=0.36 \
--beta_from=0.05 \
--beta_to=1.0 \
--cutoff_prob=0.99 \
--num_alphas=45 \
--num_betas=8 \
--alpha_from=1.0 \
--alpha_to=3.2 \
--beta_from=0.1 \
--beta_to=0.45 \
--cutoff_prob=1.0 \
--cutoff_top_n=40 \
--use_gru=False \
--use_gpu=True \
--share_rnn_weights=True \
--tune_manifest='data/librispeech/manifest.dev-clean' \
--mean_std_path='data/librispeech/mean_std.npz' \
--vocab_path='data/librispeech/vocab.txt' \
--model_path='checkpoints/libri/params.latest.tar.gz' \
--vocab_path='models/librispeech/vocab.txt' \
--model_path='models/librispeech/params.tar.gz' \
--lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm' \
--error_rate_type='wer' \
--specgram_type='linear'
Expand Down
18 changes: 10 additions & 8 deletions deep_speech_2/examples/tiny/run_tune.sh
Original file line number Diff line number Diff line change
Expand Up @@ -5,20 +5,22 @@ pushd ../.. > /dev/null
# grid-search for hyper-parameters in language model
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python -u tools/tune.py \
--num_samples=100 \
--num_batches=1 \
--batch_size=24 \
--trainer_count=8 \
--beam_size=500 \
--num_proc_bsearch=12 \
--num_conv_layers=2 \
--num_rnn_layers=3 \
--rnn_layer_size=2048 \
--num_alphas=14 \
--num_betas=20 \
--alpha_from=0.1 \
--alpha_to=0.36 \
--beta_from=0.05 \
--beta_to=1.0 \
--cutoff_prob=0.99 \
--num_alphas=45 \
--num_betas=8 \
--alpha_from=1.0 \
--alpha_to=3.2 \
--beta_from=0.1 \
--beta_to=0.45 \
--cutoff_prob=1.0 \
--cutoff_top_n=40 \
--use_gru=False \
--use_gpu=True \
--share_rnn_weights=True \
Expand Down
109 changes: 79 additions & 30 deletions deep_speech_2/tools/tune.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,39 +3,43 @@
from __future__ import division
from __future__ import print_function

import sys
import numpy as np
import argparse
import functools
import paddle.v2 as paddle
import _init_paths
from data_utils.data import DataGenerator
from model_utils.model import DeepSpeech2Model
from utils.error_rate import wer
from utils.error_rate import wer, cer
from utils.utility import add_arguments, print_arguments

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('num_samples', int, 100, "# of samples to infer.")
add_arg('num_batches', int, -1, "# of batches tuning on. "
"Default -1, on whole dev set.")
add_arg('batch_size', int, 256, "# of samples per batch.")
add_arg('trainer_count', int, 8, "# of Trainers (CPUs or GPUs).")
add_arg('beam_size', int, 500, "Beam search width.")
add_arg('num_proc_bsearch', int, 12, "# of CPUs for beam search.")
add_arg('num_conv_layers', int, 2, "# of convolution layers.")
add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.")
add_arg('num_alphas', int, 14, "# of alpha candidates for tuning.")
add_arg('num_betas', int, 20, "# of beta candidates for tuning.")
add_arg('alpha_from', float, 0.1, "Where alpha starts tuning from.")
add_arg('alpha_to', float, 0.36, "Where alpha ends tuning with.")
add_arg('beta_from', float, 0.05, "Where beta starts tuning from.")
add_arg('beta_to', float, 1.0, "Where beta ends tuning with.")
add_arg('cutoff_prob', float, 0.99, "Cutoff probability for pruning.")
add_arg('num_alphas', int, 45, "# of alpha candidates for tuning.")
add_arg('num_betas', int, 8, "# of beta candidates for tuning.")
add_arg('alpha_from', float, 1.0, "Where alpha starts tuning from.")
add_arg('alpha_to', float, 3.2, "Where alpha ends tuning with.")
add_arg('beta_from', float, 0.1, "Where beta starts tuning from.")
add_arg('beta_to', float, 0.45, "Where beta ends tuning with.")
add_arg('cutoff_prob', float, 1.0, "Cutoff probability for pruning.")
add_arg('cutoff_top_n', int, 40, "Cutoff number for pruning.")
add_arg('use_gru', bool, False, "Use GRUs instead of simple RNNs.")
add_arg('use_gpu', bool, True, "Use GPU or not.")
add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across "
"bi-directional RNNs. Not for GRU.")
add_arg('tune_manifest', str,
'data/librispeech/manifest.dev',
'data/librispeech/manifest.dev-clean',
"Filepath of manifest to tune.")
add_arg('mean_std_path', str,
'data/librispeech/mean_std.npz',
Expand Down Expand Up @@ -63,7 +67,7 @@


def tune():
"""Tune parameters alpha and beta on one minibatch."""
"""Tune parameters alpha and beta incrementally."""
if not args.num_alphas >= 0:
raise ValueError("num_alphas must be non-negative!")
if not args.num_betas >= 0:
Expand All @@ -77,7 +81,7 @@ def tune():
num_threads=1)
batch_reader = data_generator.batch_reader_creator(
manifest_path=args.tune_manifest,
batch_size=args.num_samples,
batch_size=args.batch_size,
sortagrad=False,
shuffle_method=None)
tune_data = batch_reader().next()
Expand All @@ -95,30 +99,75 @@ def tune():
pretrained_model_path=args.model_path,
share_rnn_weights=args.share_rnn_weights)

# decoders only accept string encoded in utf-8
vocab_list = [chars.encode("utf-8") for chars in data_generator.vocab_list]

error_rate_func = cer if args.error_rate_type == 'cer' else wer
# create grid for search
cand_alphas = np.linspace(args.alpha_from, args.alpha_to, args.num_alphas)
cand_betas = np.linspace(args.beta_from, args.beta_to, args.num_betas)
params_grid = [(alpha, beta) for alpha in cand_alphas
for beta in cand_betas]

## tune parameters in loop
for alpha, beta in params_grid:
result_transcripts = ds2_model.infer_batch(
infer_data=tune_data,
decoding_method='ctc_beam_search',
beam_alpha=alpha,
beam_beta=beta,
beam_size=args.beam_size,
cutoff_prob=args.cutoff_prob,
vocab_list=data_generator.vocab_list,
language_model_path=args.lang_model_path,
num_processes=args.num_proc_bsearch)
wer_sum, num_ins = 0.0, 0
for target, result in zip(target_transcripts, result_transcripts):
wer_sum += wer(target, result)
num_ins += 1
print("alpha = %f\tbeta = %f\tWER = %f" %
(alpha, beta, wer_sum / num_ins))
err_sum = [0.0 for i in xrange(len(params_grid))]
err_ave = [0.0 for i in xrange(len(params_grid))]
num_ins, cur_batch = 0, 0
## incremental tuning parameters over multiple batches
for infer_data in batch_reader():
if (args.num_batches >= 0) and (cur_batch >= args.num_batches):
break

target_transcripts = [
''.join([data_generator.vocab_list[token] for token in transcript])
for _, transcript in infer_data
]

num_ins += len(target_transcripts)
# grid search
for index, (alpha, beta) in enumerate(params_grid):
result_transcripts = ds2_model.infer_batch(
infer_data=infer_data,
decoding_method='ctc_beam_search',
beam_alpha=alpha,
beam_beta=beta,
beam_size=args.beam_size,
cutoff_prob=args.cutoff_prob,
cutoff_top_n=args.cutoff_top_n,
vocab_list=vocab_list,
language_model_path=args.lang_model_path,
num_processes=args.num_proc_bsearch)

for target, result in zip(target_transcripts, result_transcripts):
err_sum[index] += error_rate_func(target, result)
err_ave[index] = err_sum[index] / num_ins
if index % 2 == 0:
sys.stdout.write('.')
sys.stdout.flush()

# output on-line tuning result at the end of current batch
err_ave_min = min(err_ave)
min_index = err_ave.index(err_ave_min)
print("\nBatch %d [%d/?], current opt (alpha, beta) = (%s, %s), "
" min [%s] = %f" %(cur_batch, num_ins,
"%.3f" % params_grid[min_index][0],
"%.3f" % params_grid[min_index][1],
args.error_rate_type, err_ave_min))
cur_batch += 1

# output WER/CER at every (alpha, beta)
print("\nFinal %s:\n" % args.error_rate_type)
for index in xrange(len(params_grid)):
print("(alpha, beta) = (%s, %s), [%s] = %f"
% ("%.3f" % params_grid[index][0], "%.3f" % params_grid[index][1],
args.error_rate_type, err_ave[index]))

err_ave_min = min(err_ave)
min_index = err_ave.index(err_ave_min)
print("\nFinish tuning on %d batches, final opt (alpha, beta) = (%s, %s)"
% (args.num_batches, "%.3f" % params_grid[min_index][0],
"%.3f" % params_grid[min_index][1]))

ds2_model.logger.info("finish inference")


def main():
Expand Down