-
Notifications
You must be signed in to change notification settings - Fork 2.9k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #555 from will-am/xception
Add Xception model for image classification
- Loading branch information
Showing
6 changed files
with
217 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,193 @@ | ||
import paddle.v2 as paddle | ||
|
||
__all__ = ['xception'] | ||
|
||
|
||
def img_separable_conv_bn(name, input, num_channels, num_out_channels, | ||
filter_size, stride, padding, act): | ||
conv = paddle.networks.img_separable_conv( | ||
name=name, | ||
input=input, | ||
num_channels=num_channels, | ||
num_out_channels=num_out_channels, | ||
filter_size=filter_size, | ||
stride=stride, | ||
padding=padding, | ||
act=paddle.activation.Linear()) | ||
norm = paddle.layer.batch_norm(name=name + '_norm', input=conv, act=act) | ||
return norm | ||
|
||
|
||
def img_conv_bn(name, input, num_channels, num_filters, filter_size, stride, | ||
padding, act): | ||
conv = paddle.layer.img_conv( | ||
name=name, | ||
input=input, | ||
num_channels=num_channels, | ||
num_filters=num_filters, | ||
filter_size=filter_size, | ||
stride=stride, | ||
padding=padding, | ||
act=paddle.activation.Linear()) | ||
norm = paddle.layer.batch_norm(name=name + '_norm', input=conv, act=act) | ||
return norm | ||
|
||
|
||
def conv_block0(input, | ||
group, | ||
num_channels, | ||
num_filters, | ||
num_filters2=None, | ||
filter_size=3, | ||
pool_padding=0, | ||
entry_relu=True): | ||
if num_filters2 is None: | ||
num_filters2 = num_filters | ||
|
||
if entry_relu: | ||
act_input = paddle.layer.mixed( | ||
input=paddle.layer.identity_projection(input=input), | ||
act=paddle.activation.Relu()) | ||
else: | ||
act_input = input | ||
conv0 = img_separable_conv_bn( | ||
name='xception_block{0}_conv0'.format(group), | ||
input=act_input, | ||
num_channels=num_channels, | ||
num_out_channels=num_filters, | ||
filter_size=filter_size, | ||
stride=1, | ||
padding=(filter_size - 1) / 2, | ||
act=paddle.activation.Relu()) | ||
conv1 = img_separable_conv_bn( | ||
name='xception_block{0}_conv1'.format(group), | ||
input=conv0, | ||
num_channels=num_filters, | ||
num_out_channels=num_filters2, | ||
filter_size=filter_size, | ||
stride=1, | ||
padding=(filter_size - 1) / 2, | ||
act=paddle.activation.Linear()) | ||
pool0 = paddle.layer.img_pool( | ||
name='xception_block{0}_pool'.format(group), | ||
input=conv1, | ||
pool_size=3, | ||
stride=2, | ||
padding=pool_padding, | ||
num_channels=num_filters2, | ||
pool_type=paddle.pooling.CudnnMax()) | ||
|
||
shortcut = img_conv_bn( | ||
name='xception_block{0}_shortcut'.format(group), | ||
input=input, | ||
num_channels=num_channels, | ||
num_filters=num_filters2, | ||
filter_size=1, | ||
stride=2, | ||
padding=0, | ||
act=paddle.activation.Linear()) | ||
|
||
return paddle.layer.addto( | ||
input=[pool0, shortcut], act=paddle.activation.Linear()) | ||
|
||
|
||
def conv_block1(input, group, num_channels, num_filters, filter_size=3): | ||
act_input = paddle.layer.mixed( | ||
input=paddle.layer.identity_projection(input=input), | ||
act=paddle.activation.Relu()) | ||
conv0 = img_separable_conv_bn( | ||
name='xception_block{0}_conv0'.format(group), | ||
input=act_input, | ||
num_channels=num_channels, | ||
num_out_channels=num_filters, | ||
filter_size=filter_size, | ||
stride=1, | ||
padding=(filter_size - 1) / 2, | ||
act=paddle.activation.Relu()) | ||
conv1 = img_separable_conv_bn( | ||
name='xception_block{0}_conv1'.format(group), | ||
input=conv0, | ||
num_channels=num_filters, | ||
num_out_channels=num_filters, | ||
filter_size=filter_size, | ||
stride=1, | ||
padding=(filter_size - 1) / 2, | ||
act=paddle.activation.Relu()) | ||
conv2 = img_separable_conv_bn( | ||
name='xception_block{0}_conv2'.format(group), | ||
input=conv1, | ||
num_channels=num_filters, | ||
num_out_channels=num_filters, | ||
filter_size=filter_size, | ||
stride=1, | ||
padding=(filter_size - 1) / 2, | ||
act=paddle.activation.Linear()) | ||
|
||
shortcut = input | ||
return paddle.layer.addto( | ||
input=[conv2, shortcut], act=paddle.activation.Linear()) | ||
|
||
|
||
def xception(input, class_dim): | ||
conv = img_conv_bn( | ||
name='xception_conv0', | ||
input=input, | ||
num_channels=3, | ||
num_filters=32, | ||
filter_size=3, | ||
stride=2, | ||
padding=1, | ||
act=paddle.activation.Relu()) | ||
conv = img_conv_bn( | ||
name='xception_conv1', | ||
input=conv, | ||
num_channels=32, | ||
num_filters=64, | ||
filter_size=3, | ||
stride=1, | ||
padding=1, | ||
act=paddle.activation.Relu()) | ||
conv = conv_block0( | ||
input=conv, group=2, num_channels=64, num_filters=128, entry_relu=False) | ||
conv = conv_block0(input=conv, group=3, num_channels=128, num_filters=256) | ||
conv = conv_block0(input=conv, group=4, num_channels=256, num_filters=728) | ||
for group in range(5, 13): | ||
conv = conv_block1( | ||
input=conv, group=group, num_channels=728, num_filters=728) | ||
conv = conv_block0( | ||
input=conv, | ||
group=13, | ||
num_channels=728, | ||
num_filters=728, | ||
num_filters2=1024) | ||
conv = img_separable_conv_bn( | ||
name='xception_conv14', | ||
input=conv, | ||
num_channels=1024, | ||
num_out_channels=1536, | ||
filter_size=3, | ||
stride=1, | ||
padding=1, | ||
act=paddle.activation.Relu()) | ||
conv = img_separable_conv_bn( | ||
name='xception_conv15', | ||
input=conv, | ||
num_channels=1536, | ||
num_out_channels=2048, | ||
filter_size=3, | ||
stride=1, | ||
padding=1, | ||
act=paddle.activation.Relu()) | ||
pool = paddle.layer.img_pool( | ||
name='xception_global_pool', | ||
input=conv, | ||
pool_size=7, | ||
stride=1, | ||
num_channels=2048, | ||
pool_type=paddle.pooling.CudnnAvg()) | ||
out = paddle.layer.fc( | ||
name='xception_fc', | ||
input=pool, | ||
size=class_dim, | ||
act=paddle.activation.Softmax()) | ||
return out |