Skip to content

Commit

Permalink
Merge pull request #205 from xinghai-sun/cloud_shards
Browse files Browse the repository at this point in the history
Separate data uploading from job submission for DS2 cloud training and add support for multiple shards uploading.
  • Loading branch information
xinghai-sun authored Aug 15, 2017
2 parents 406db45 + 88eabac commit 69ebc58
Show file tree
Hide file tree
Showing 7 changed files with 173 additions and 226 deletions.
8 changes: 7 additions & 1 deletion deep_speech_2/README.md
100644 → 100755
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Deep Speech 2 on PaddlePaddle
# DeepSpeech2 on PaddlePaddle

## Installation

Expand Down Expand Up @@ -161,3 +161,9 @@ python demo_client.py
On the client console, press and hold the "white-space" key on the keyboard to start talking, until you finish your speech and then release the "white-space" key. The decoding results (infered transcription) will be displayed.

It could be possible to start the server and the client in two seperate machines, e.g. `demo_client.py` is usually started in a machine with a microphone hardware, while `demo_server.py` is usually started in a remote server with powerful GPUs. Please first make sure that these two machines have network access to each other, and then use `--host_ip` and `--host_port` to indicate the server machine's actual IP address (instead of the `localhost` as default) and TCP port, in both `demo_server.py` and `demo_client.py`.


## PaddleCloud Training

If you wish to train DeepSpeech2 on PaddleCloud, please refer to
[Train DeepSpeech2 on PaddleCloud](https://github.com/PaddlePaddle/models/tree/develop/deep_speech_2/cloud).
98 changes: 40 additions & 58 deletions deep_speech_2/cloud/README.md
100644 → 100755
Original file line number Diff line number Diff line change
@@ -1,81 +1,63 @@
# Run DS2 on PaddleCloud
# Train DeepSpeech2 on PaddleCloud

>Note:
>Make sure [PaddleCloud client](https://github.com/PaddlePaddle/cloud/blob/develop/doc/usage_cn.md#%E4%B8%8B%E8%BD%BD%E5%B9%B6%E9%85%8D%E7%BD%AEpaddlecloud) has be installed and current directory is `models/deep_speech_2/cloud/`
>Please make sure [PaddleCloud Client](https://github.com/PaddlePaddle/cloud/blob/develop/doc/usage_cn.md#%E4%B8%8B%E8%BD%BD%E5%B9%B6%E9%85%8D%E7%BD%AEpaddlecloud) has be installed and current directory is `deep_speech_2/cloud/`
## Step-1 Configure data set
## Step 1: Upload Data

Configure your input data and output path in pcloud_submit.sh:
Provided with several input manifests, `pcloud_upload_data.sh` will pack and upload all the containing audio files to PaddleCloud filesystem, and also generate some corresponding manifest files with updated cloud paths.

- `TRAIN_MANIFEST`: Absolute path of train data manifest file in local file system.This file has format as bellow:
Please modify the following arguments in `pcloud_upload_data.sh`:

- `IN_MANIFESTS`: Paths (in local filesystem) of manifest files containing the audio files to be uploaded. Multiple paths can be concatenated with a whitespace delimeter.
- `OUT_MANIFESTS`: Paths (in local filesystem) to write the updated output manifest files to. Multiple paths can be concatenated with a whitespace delimeter. The values of `audio_filepath` in the output manifests are updated with cloud filesystem paths.
- `CLOUD_DATA_DIR`: Directory (in PaddleCloud filesystem) to upload the data to. Don't forget to replace `USERNAME` in the default directory and make sure that you have the permission to write it.
- `NUM_SHARDS`: Number of data shards / parts (in tar files) to be generated when packing and uploading data. Smaller `num_shards` requires larger temoporal local disk space for packing data.

By running:

```
{"audio_filepath": "/home/disk1/LibriSpeech/dev-clean/1272/128104/1272-128104-0000.flac", "duration": 5.855, "text
": "mister quilter is the ..."}
{"audio_filepath": "/home/disk1/LibriSpeech/dev-clean/1272/128104/1272-128104-0001.flac", "duration": 4.815, "text
": "nor is mister ..."}
sh pcloud_upload_data.sh
```
all the audio files will be uploaded to PaddleCloud filesystem, and you will get modified manifests files in `OUT_MANIFESTS`.

- `TEST_MANIFEST`: Absolute path of train data manifest file in local filesystem. This file has format like `TRAIN_MANIFEST`.
- `VOCAB_FILE`: Absolute path of vocabulary file in local filesytem.
- `MEAN_STD_FILE`: Absolute path of normalizer's statistic file in local filesytem.
- `CLOUD_DATA_DIR:` Absolute path in PaddleCloud filesystem. We will upload local train data to this directory.
- `CLOUD_MODEL_DIR`: Absolute path in PaddleCloud filesystem. PaddleCloud trainer will save model to this directory.
You have to take this step only once, in the very first time you do the cloud training. Later on, the data is persisitent on the cloud filesystem and reusable for further job submissions.

>Note: Upload will be skipped if target file has existed in `CLOUD_DATA_DIR`.
## Step 2: Configure Training

## Step-2 Configure computation resource
Configure cloud training arguments in `pcloud_submit.sh`, with the following arguments:

Configure computation resource in pcloud_submit.sh:
- `TRAIN_MANIFEST`: Manifest filepath (in local filesystem) for training. Notice that the`audio_filepath` should be in cloud filesystem, like those generated by `pcloud_upload_data.sh`.
- `DEV_MANIFEST`: Manifest filepath (in local filesystem) for validation.
- `CLOUD_MODEL_DIR`: Directory (in PaddleCloud filesystem) to save the model parameters (checkpoints). Don't forget to replace `USERNAME` in the default directory and make sure that you have the permission to write it.
- `BATCH_SIZE`: Training batch size for a single node.
- `NUM_GPU`: Number of GPUs allocated for a single node.
- `NUM_NODE`: Number of nodes (machines) allocated for this job.
- `IS_LOCAL`: Set to False to enable parameter server, if using multiple nodes.

```
# Configure computation resource and submit job to PaddleCloud
paddlecloud submit \
-image wanghaoshuang/pcloud_ds2:latest \
-jobname ${JOB_NAME} \
-cpu 4 \
-gpu 4 \
-memory 10Gi \
-parallelism 1 \
-pscpu 1 \
-pservers 1 \
-psmemory 10Gi \
-passes 1 \
-entry "sh pcloud_train.sh ${CLOUD_DATA_DIR} ${CLOUD_MODEL_DIR}" \
${DS2_PATH}
```
For more information, please refer to [PaddleCloud](https://github.com/PaddlePaddle/cloud/blob/develop/doc/usage_cn.md#提交任务)
Configure other training hyper-parameters in `pcloud_train.sh` as you wish, just as what you can do in local training.

## Step-3 Configure algorithm options
Configure algorithm options in pcloud_train.sh:
```
python train.py \
--use_gpu=1 \
--trainer_count=4 \
--batch_size=256 \
--mean_std_filepath=$MEAN_STD_FILE \
--train_manifest_path='./local.train.manifest' \
--dev_manifest_path='./local.test.manifest' \
--vocab_filepath=$VOCAB_PATH \
--output_model_dir=${MODEL_PATH}
```
You can get more information about algorithm options by follow command:
```
cd ..
python train.py --help
```
By running:

## Step-4 Submit job
```
$ sh pcloud_submit.sh
sh pcloud_submit.sh
```
you submit a training job to PaddleCloud. And you will see the job name when the submission is done.


## Step 3 Get Job Logs

Run this to list all the jobs you have submitted, as well as their running status:

## Step-5 Get logs
```
$ paddlecloud logs -n 10000 deepspeech20170727130129
paddlecloud get jobs
```
For more information, please refer to [PaddleCloud client](https://github.com/PaddlePaddle/cloud/blob/develop/doc/usage_cn.md#下载并配置paddlecloud) or get help by follow command:

Run this, the corresponding job's logs will be printed.
```
paddlecloud --help
paddlecloud logs -n 10000 $REPLACED_WITH_YOUR_ACTUAL_JOB_NAME
```

## More Help

For more information about the usage of PaddleCloud, please refer to [PaddleCloud Usage](https://github.com/PaddlePaddle/cloud/blob/develop/doc/usage_cn.md#提交任务).
37 changes: 8 additions & 29 deletions deep_speech_2/cloud/pcloud_submit.sh
Original file line number Diff line number Diff line change
@@ -1,48 +1,27 @@
# Configure input data set in local filesystem
TRAIN_MANIFEST="../datasets/manifest.train"
DEV_MANIFEST="../datasets/manifest.dev"
VOCAB_FILE="../datasets/vocab/eng_vocab.txt"
MEAN_STD_FILE="../mean_std.npz"
# Configure output path in PaddleCloud filesystem
CLOUD_DATA_DIR="/pfs/dlnel/home/sunxinghai@baidu.com/deepspeech2/data"
CLOUD_MODEL_DIR="/pfs/dlnel/home/sunxinghai@baidu.com/deepspeech2/model"
# Configure cloud resources
NUM_CPU=8
TRAIN_MANIFEST="cloud/cloud.manifest.train"
DEV_MANIFEST="cloud/cloud.manifest.dev"
CLOUD_MODEL_DIR="/pfs/dlnel/home/USERNAME/deepspeech2/model"
BATCH_SIZE=256
NUM_GPU=8
NUM_NODE=1
MEMORY="10Gi"
IS_LOCAL="True"

# Pack and upload local data to PaddleCloud filesystem
python upload_data.py \
--train_manifest_path=${TRAIN_MANIFEST} \
--dev_manifest_path=${DEV_MANIFEST} \
--vocab_file=${VOCAB_FILE} \
--mean_std_file=${MEAN_STD_FILE} \
--cloud_data_path=${CLOUD_DATA_DIR}
if [ $? -ne 0 ]
then
echo "upload data failed!"
exit 1
fi

# Submit job to PaddleCloud
JOB_NAME=deepspeech-`date +%Y%m%d%H%M%S`
DS2_PATH=${PWD%/*}
cp -f pcloud_train.sh ${DS2_PATH}

paddlecloud submit \
-image bootstrapper:5000/wanghaoshuang/pcloud_ds2:latest \
-jobname ${JOB_NAME} \
-cpu ${NUM_CPU} \
-cpu ${NUM_GPU} \
-gpu ${NUM_GPU} \
-memory ${MEMORY} \
-memory 64Gi \
-parallelism ${NUM_NODE} \
-pscpu 1 \
-pservers 1 \
-psmemory ${MEMORY} \
-psmemory 64Gi \
-passes 1 \
-entry "sh pcloud_train.sh ${CLOUD_DATA_DIR} ${CLOUD_MODEL_DIR} ${NUM_CPU} ${NUM_GPU} ${IS_LOCAL}" \
-entry "sh pcloud_train.sh ${TRAIN_MANIFEST} ${DEV_MANIFEST} ${CLOUD_MODEL_DIR} ${NUM_GPU} ${BATCH_SIZE} ${IS_LOCAL}" \
${DS2_PATH}

rm ${DS2_PATH}/pcloud_train.sh
40 changes: 14 additions & 26 deletions deep_speech_2/cloud/pcloud_train.sh
Original file line number Diff line number Diff line change
@@ -1,36 +1,24 @@
DATA_PATH=$1
MODEL_PATH=$2
NUM_CPU=$3
TRAIN_MANIFEST=$1
DEV_MANIFEST=$2
MODEL_PATH=$3
NUM_GPU=$4
IS_LOCAL=$5
BATCH_SIZE=$5
IS_LOCAL=$6

TRAIN_MANI=${DATA_PATH}/cloud.train.manifest
DEV_MANI=${DATA_PATH}/cloud.dev.manifest
TRAIN_TAR=${DATA_PATH}/cloud.train.tar
DEV_TAR=${DATA_PATH}/cloud.dev.tar
VOCAB_PATH=${DATA_PATH}/vocab.txt
MEAN_STD_FILE=${DATA_PATH}/mean_std.npz

# split train data for each pcloud node
python ./cloud/split_data.py \
--in_manifest_path=${TRAIN_MANI} \
--data_tar_path=${TRAIN_TAR} \
--out_manifest_path='/local.train.manifest'
--in_manifest_path=${TRAIN_MANIFEST} \
--out_manifest_path='/local.manifest.train'

# split dev data for each pcloud node
python ./cloud/split_data.py \
--in_manifest_path=${DEV_MANI} \
--data_tar_path=${DEV_TAR} \
--out_manifest_path='/local.dev.manifest'
--in_manifest_path=${DEV_MANIFEST} \
--out_manifest_path='/local.manifest.dev'

# run train
python train.py \
--batch_size=$BATCH_SIZE \
--use_gpu=1 \
--trainer_count=${NUM_GPU} \
--num_threads_data=${NUM_CPU} \
--num_threads_data=${NUM_GPU} \
--is_local=${IS_LOCAL} \
--mean_std_filepath=${MEAN_STD_FILE} \
--train_manifest_path='/local.train.manifest' \
--dev_manifest_path='/local.dev.manifest' \
--vocab_filepath=${VOCAB_PATH} \
--output_model_dir=${MODEL_PATH}
--train_manifest_path='/local.manifest.train' \
--dev_manifest_path='/local.manifest.dev' \
--output_model_dir=${MODEL_PATH} \
17 changes: 17 additions & 0 deletions deep_speech_2/cloud/pcloud_upload_data.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
IN_MANIFESTS="../datasets/manifest.train ../datasets/manifest.dev ../datasets/manifest.test"
OUT_MANIFESTS="./cloud.manifest.train ./cloud.manifest.dev ./cloud.manifest.test"
CLOUD_DATA_DIR="/pfs/dlnel/home/USERNAME/deepspeech2/data/librispeech"
NUM_SHARDS=50

python upload_data.py \
--in_manifest_paths ${IN_MANIFESTS} \
--out_manifest_paths ${OUT_MANIFESTS} \
--cloud_data_dir ${CLOUD_DATA_DIR} \
--num_shards ${NUM_SHARDS}

if [ $? -ne 0 ]
then
echo "Upload Data Failed!"
exit 1
fi
echo "All Done."
36 changes: 12 additions & 24 deletions deep_speech_2/cloud/split_data.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,5 @@
"""This tool is used for splitting data into each node of
paddle cloud by total trainer count and current trainer id.
The meaning of trainer is a instance of k8s cluster.
This script should be called in paddle cloud.
paddlecloud. This script should be called in paddlecloud.
"""
from __future__ import absolute_import
from __future__ import division
Expand All @@ -14,40 +12,30 @@
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--in_manifest_path",
default='./cloud.train.manifest',
type=str,
help="Input manifest path. (default: %(default)s)")
parser.add_argument(
"--data_tar_path",
default='./cloud.train.tar',
type=str,
help="Data tar file path. (default: %(default)s)")
required=True,
help="Input manifest path for all nodes.")
parser.add_argument(
"--out_manifest_path",
default='./local.train.manifest',
type=str,
help="Out manifest file path. (default: %(default)s)")
required=True,
help="Output manifest file path for current node.")
args = parser.parse_args()


def split_data(in_manifest, tar_path, out_manifest):
def split_data(in_manifest_path, out_manifest_path):
with open("/trainer_id", "r") as f:
trainer_id = int(f.readline()[:-1])
with open("/trainer_count", "r") as f:
trainer_count = int(f.readline()[:-1])

tar_path = os.path.abspath(tar_path)
result = []
for index, json_line in enumerate(open(in_manifest)):
out_manifest = []
for index, json_line in enumerate(open(in_manifest_path, 'r')):
if (index % trainer_count) == trainer_id:
json_data = json.loads(json_line)
json_data['audio_filepath'] = "tar:%s#%s" % (
tar_path, json_data['audio_filepath'])
result.append("%s\n" % json.dumps(json_data))
with open(out_manifest, 'w') as manifest:
manifest.writelines(result)
out_manifest.append("%s\n" % json_line.strip())
with open(out_manifest_path, 'w') as f:
f.writelines(out_manifest)


if __name__ == '__main__':
split_data(args.in_manifest_path, args.data_tar_path,
args.out_manifest_path)
split_data(args.in_manifest_path, args.out_manifest_path)
Loading

0 comments on commit 69ebc58

Please sign in to comment.