-
Notifications
You must be signed in to change notification settings - Fork 76
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #385 from PaddlePaddle/controller
[WIP]Autoscaling Controller
- Loading branch information
Showing
33 changed files
with
2,560 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
# Run Autoscaling job on your local machine | ||
|
||
This documentation shows an example to run two jobs on a local kubernetes cluster and see the job scaling status. | ||
|
||
## Prerequisites | ||
|
||
- [install minikube](https://kubernetes.io/docs/tasks/tools/install-minikube/) | ||
- [install kubectl](https://kubernetes.io/docs/tasks/tools/install-kubectl/) | ||
|
||
## Run local Autoscaling job | ||
|
||
1. Start a local minikube cluster. | ||
|
||
```bash | ||
minikube start --kubernetes-version v1.6.4 | ||
``` | ||
|
||
1. Run the following commands to create sample training workspace and | ||
data. | ||
|
||
```bash | ||
mkdir /path/to/workspace | ||
cp $REPO_PATH/doc/autoscale_example/*.py /path/to/workspace | ||
mkdir -p /path/to/workspace/data/ | ||
cp -r $REPO_PATH/doc/autoscale_example/uci_housing/ /path/to/workspace/data/ | ||
``` | ||
|
||
1. Mount the workspace folder into Minikube: | ||
|
||
```bash | ||
minikube mount /path/to/workspace:/workspace | ||
``` | ||
|
||
The `minikube mount` command will block, so start a new terminal to | ||
continue the tutorial. | ||
|
||
1. Start controller and a example job: | ||
|
||
```bash | ||
cd $REPO_PATH/k8s/controller | ||
kubectl create -f controller.yaml | ||
kubectl create -f trainingjob_resource.yaml | ||
kubectl create -f autoscale_job/ | ||
kubectl get pods | ||
``` | ||
|
||
1. Start another job simulating cluster load, then you can observe the | ||
scale process using `kubectl get pods`: | ||
|
||
```bash | ||
kubectl create -f autoscale_load/ | ||
kubectl get pods | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
import sys | ||
import os | ||
import errno | ||
import recordio | ||
import paddle.v2.dataset as ds | ||
|
||
def convert(output_path, name): | ||
mod = __import__("paddle.v2.dataset." + name, fromlist=['']) | ||
|
||
path = os.path.join(output_path, name) | ||
|
||
mod.convert(path) | ||
|
||
if __name__ == '__main__': | ||
a = ['uci_housing'] | ||
for m in a: | ||
convert("./data", m) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
import paddle.v2 as paddle | ||
import os | ||
import gzip | ||
from paddle.v2.reader.creator import cloud_reader | ||
import paddle.v2.dataset.uci_housing as uci_housing | ||
|
||
etcd_ip = os.getenv("ETCD_IP") | ||
etcd_endpoint = "http://" + etcd_ip + ":" + "2379" | ||
trainer_id = int(os.getenv("PADDLE_INIT_TRAINER_ID")) | ||
|
||
def main(): | ||
# init | ||
paddle.init() | ||
|
||
# network config | ||
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13)) | ||
y_predict = paddle.layer.fc(input=x, | ||
param_attr=paddle.attr.Param(name='w', learning_rate=1e-3), | ||
size=1, | ||
act=paddle.activation.Linear(), | ||
bias_attr=paddle.attr.Param(name='b', learning_rate=1e-3)) | ||
y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1)) | ||
cost = paddle.layer.square_error_cost(input=y_predict, label=y) | ||
|
||
# create parameters | ||
parameters = paddle.parameters.create(cost) | ||
|
||
# create optimizer | ||
optimizer = paddle.optimizer.Momentum(momentum=0, learning_rate=2e-4) | ||
|
||
trainer = paddle.trainer.SGD( | ||
cost=cost, | ||
parameters=parameters, | ||
update_equation=optimizer, | ||
is_local=False, | ||
pserver_spec=etcd_endpoint, | ||
use_etcd=True) | ||
|
||
feeding = {'x': 0, 'y': 1} | ||
|
||
# event_handler to print training and testing info | ||
def event_handler(event): | ||
if isinstance(event, paddle.event.EndIteration): | ||
if event.batch_id % 100 == 0: | ||
print "Pass %d, Batch %d, Cost %f" % ( | ||
event.pass_id, event.batch_id, event.cost) | ||
|
||
if isinstance(event, paddle.event.EndPass): | ||
result = trainer.test( | ||
reader=paddle.batch(uci_housing.test(), batch_size=2), | ||
feeding=feeding) | ||
print "Test %d, Cost %f" % (event.pass_id, result.cost) | ||
if trainer_id == "0": | ||
with gzip.open("fit-a-line_pass_%05d.tar.gz" % event.pass_id, | ||
"w") as f: | ||
parameters.to_tar(f) | ||
# training | ||
trainer.train( | ||
reader=paddle.batch( | ||
paddle.reader.shuffle(cloud_reader( | ||
["/workspace/data/uci_housing/uci_housing_train-*"], | ||
etcd_endpoint), buf_size=500), | ||
batch_size=2), | ||
feeding=feeding, | ||
event_handler=event_handler, | ||
num_passes=30) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
from PIL import Image | ||
import numpy as np | ||
import paddle.v2 as paddle | ||
import paddle.v2.dataset.common as common | ||
import paddle.v2.dataset.mnist as mnist | ||
from paddle.v2.reader.creator import cloud_reader | ||
import os | ||
import sys | ||
import glob | ||
import pickle | ||
|
||
|
||
# NOTE: must change this to your own username on paddlecloud. | ||
TRAIN_FILES_PATH = "/workspace/data/mnist/minist_train-*" | ||
TEST_FILES_PATH = "/workspace/data/mnist/minist_test-*" | ||
|
||
etcd_ip = os.getenv("ETCD_IP") | ||
etcd_endpoint = "http://" + etcd_ip + ":" + "2379" | ||
trainer_id = int(os.getenv("PADDLE_INIT_TRAINER_ID", "-1")) | ||
|
||
|
||
def softmax_regression(img): | ||
predict = paddle.layer.fc( | ||
input=img, size=10, act=paddle.activation.Softmax()) | ||
return predict | ||
|
||
|
||
def multilayer_perceptron(img): | ||
# The first fully-connected layer | ||
hidden1 = paddle.layer.fc(input=img, size=128, act=paddle.activation.Relu()) | ||
# The second fully-connected layer and the according activation function | ||
hidden2 = paddle.layer.fc( | ||
input=hidden1, size=64, act=paddle.activation.Relu()) | ||
# The thrid fully-connected layer, note that the hidden size should be 10, | ||
# which is the number of unique digits | ||
predict = paddle.layer.fc( | ||
input=hidden2, size=10, act=paddle.activation.Softmax()) | ||
return predict | ||
|
||
|
||
def convolutional_neural_network(img): | ||
# first conv layer | ||
conv_pool_1 = paddle.networks.simple_img_conv_pool( | ||
input=img, | ||
filter_size=5, | ||
num_filters=20, | ||
num_channel=1, | ||
pool_size=2, | ||
pool_stride=2, | ||
act=paddle.activation.Relu()) | ||
# second conv layer | ||
conv_pool_2 = paddle.networks.simple_img_conv_pool( | ||
input=conv_pool_1, | ||
filter_size=5, | ||
num_filters=50, | ||
num_channel=20, | ||
pool_size=2, | ||
pool_stride=2, | ||
act=paddle.activation.Relu()) | ||
# fully-connected layer | ||
predict = paddle.layer.fc( | ||
input=conv_pool_2, size=10, act=paddle.activation.Softmax()) | ||
return predict | ||
|
||
|
||
def main(): | ||
paddle.init() | ||
|
||
# define network topology | ||
images = paddle.layer.data( | ||
name='pixel', type=paddle.data_type.dense_vector(784)) | ||
label = paddle.layer.data( | ||
name='label', type=paddle.data_type.integer_value(10)) | ||
|
||
# Here we can build the prediction network in different ways. Please | ||
# choose one by uncomment corresponding line. | ||
# predict = softmax_regression(images) | ||
# predict = multilayer_perceptron(images) | ||
predict = convolutional_neural_network(images) | ||
|
||
cost = paddle.layer.classification_cost(input=predict, label=label) | ||
|
||
parameters = paddle.parameters.create(cost) | ||
|
||
optimizer = paddle.optimizer.Momentum( | ||
learning_rate=0.1 / 128.0, | ||
momentum=0.9, | ||
regularization=paddle.optimizer.L2Regularization(rate=0.0005 * 128)) | ||
|
||
trainer = paddle.trainer.SGD( | ||
cost=cost, | ||
parameters=parameters, | ||
update_equation=optimizer, | ||
is_local=False, | ||
pserver_spec=etcd_endpoint, | ||
use_etcd=True) | ||
|
||
def event_handler(event): | ||
if isinstance(event, paddle.event.EndIteration): | ||
if event.batch_id % 100 == 0: | ||
print "Pass %d, Batch %d, Cost %f, %s" % ( | ||
event.pass_id, event.batch_id, event.cost, event.metrics) | ||
if isinstance(event, paddle.event.EndPass): | ||
result = trainer.test( | ||
reader=paddle.batch( | ||
mnist.test(), | ||
batch_size=2)) | ||
print "Test with Pass %d, Cost %f, %s\n" % ( | ||
event.pass_id, result.cost, result.metrics) | ||
|
||
trainer.train( | ||
reader=paddle.batch( | ||
cloud_reader([TRAIN_FILES_PATH], etcd_endpoint), | ||
batch_size=128), | ||
event_handler=event_handler, | ||
num_passes=30) | ||
|
||
if __name__ == '__main__': | ||
usage = "python train.py [prepare|train]" | ||
if len(sys.argv) != 2: | ||
print usage | ||
exit(1) | ||
|
||
if trainer_id == -1 or etcd_ip == "": | ||
print "no cloud environ found, must run on cloud" | ||
exit(1) | ||
|
||
if sys.argv[1] == "train": | ||
main() | ||
|
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
#!/bin/bash | ||
|
||
# FIXME: should run this script before build, when using api >= 1.7 | ||
# api == 1.6 is not compatible with this deep copy code generations. | ||
|
||
go get -u k8s.io/gengo | ||
go build -o /tmp/deepcopy-gen k8s.io/gengo/examples/deepcopy-gen | ||
/tmp/deepcopy-gen -i github.com/PaddlePaddle/cloud/go/api -O zz_generated.deepcopy 2> /dev/null |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
package api | ||
|
||
import ( | ||
"k8s.io/apimachinery/pkg/runtime" | ||
"k8s.io/apimachinery/pkg/runtime/schema" | ||
"k8s.io/apimachinery/pkg/runtime/serializer" | ||
clientgoapi "k8s.io/client-go/pkg/api" | ||
"k8s.io/client-go/pkg/api/v1" | ||
"k8s.io/client-go/rest" | ||
) | ||
|
||
// ConfigureClient will setup required field that the k8s rest client needs. | ||
func ConfigureClient(config *rest.Config) { | ||
groupversion := schema.GroupVersion{ | ||
Group: "paddlepaddle.org", | ||
Version: "v1", | ||
} | ||
|
||
config.GroupVersion = &groupversion | ||
config.APIPath = "/apis" | ||
config.ContentType = runtime.ContentTypeJSON | ||
config.NegotiatedSerializer = serializer.DirectCodecFactory{CodecFactory: clientgoapi.Codecs} | ||
|
||
schemeBuilder := runtime.NewSchemeBuilder( | ||
func(scheme *runtime.Scheme) error { | ||
scheme.AddKnownTypes( | ||
groupversion, | ||
&TrainingJob{}, | ||
&TrainingJobList{}, | ||
&v1.ListOptions{}, | ||
&v1.DeleteOptions{}, | ||
) | ||
return nil | ||
}) | ||
schemeBuilder.AddToScheme(clientgoapi.Scheme) | ||
} |
Oops, something went wrong.