-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add ReorderLoDTensorByRank #6789
Changes from all commits
b23982a
8823a12
9189567
540af31
11f4f89
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,234 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include <paddle/framework/lod_rank_table.h> | ||
#include "paddle/framework/op_registry.h" | ||
#include "paddle/operators/detail/safe_ref.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
class ReorderLoDTensorByRankTableOpProtoMaker | ||
: public framework::OpProtoAndCheckerMaker { | ||
public: | ||
ReorderLoDTensorByRankTableOpProtoMaker(OpProto *proto, | ||
OpAttrChecker *op_checker) | ||
: OpProtoAndCheckerMaker(proto, op_checker) { | ||
AddInput("X", "(LoDTensor) the input lod tensor need to be reordered."); | ||
AddInput("RankTable", | ||
"(LoDRankTable) the rank table that input need follow"); | ||
AddOutput("Out", "(LoDTensor) reordered lod tensor"); | ||
AddComment(R"DOC(ReorderLoDTensorByRankTable | ||
|
||
Reorder the input X by the rank of `RankTable`. If `RankTable` is ordered by | ||
index [3, 0, 2, 1]. Input X will reorder its sequence, the third sequence of | ||
X will be the first sequence of Output. | ||
|
||
NOTE: The RankTable does not need to be calculated by X. | ||
|
||
For example: | ||
The X = [Seq0, Seq1, Seq2, Seq3]. The indices of RankTable are [3, 0, 2, 1]. | ||
|
||
The Out = [Seq3, Seq0, Seq2, Seq1] with correct LoD information. | ||
)DOC"); | ||
} | ||
}; | ||
|
||
class ReorderLoDTensorByRankTableBase : public framework::OperatorBase { | ||
public: | ||
ReorderLoDTensorByRankTableBase(const std::string &type, | ||
const framework::VariableNameMap &inputs, | ||
const framework::VariableNameMap &outputs, | ||
const framework::AttributeMap &attrs) | ||
: OperatorBase(type, inputs, outputs, attrs) {} | ||
void Run(const framework::Scope &scope, | ||
const platform::DeviceContext &dev_ctx) const override { | ||
auto &x = | ||
detail::Ref(scope.FindVar(Input("X")), | ||
"Cannot find input lod tensor variable %s", Input("X")) | ||
.Get<framework::LoDTensor>(); | ||
auto &rank_table = detail::Ref(scope.FindVar(Input("RankTable")), | ||
"Cannot find input rank table variable %s", | ||
Input("RankTable")) | ||
.Get<framework::LoDRankTable>(); | ||
auto &out = | ||
*detail::Ref(scope.FindVar(Output("Out")), | ||
"Cannot find output lod tensor variable %s", Output("Out")) | ||
.GetMutable<framework::LoDTensor>(); | ||
|
||
out.Resize(x.dims()); | ||
out.mutable_data(x.place(), x.type()); | ||
this->process(dev_ctx, x, rank_table, &out); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Please make sure the size of There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. It will be checked during Tensor::Slice. |
||
} | ||
|
||
protected: | ||
virtual void process(const platform::DeviceContext &dev_ctx, | ||
const framework::LoDTensor &x, | ||
const framework::LoDRankTable &rank_table, | ||
framework::LoDTensor *out) const = 0; | ||
|
||
struct AbsoluteRankTableItem { | ||
size_t offset; // the absolute/accumulated offset. | ||
size_t length; // the length | ||
framework::LoD lod; | ||
}; | ||
|
||
std::vector<AbsoluteRankTableItem> GetAbsoluteOffsetAndLengthByLoDRankTable( | ||
const framework::LoDTensor &x) const { | ||
std::vector<AbsoluteRankTableItem> absolute_table; | ||
size_t level = 0; | ||
size_t size = x.lod()[level].size(); | ||
|
||
for (size_t i = 0; i < size - 1; ++i) { | ||
auto lod_offset = | ||
framework::GetSubLoDAndAbsoluteOffset(x.lod(), i, i + 1, level); | ||
|
||
auto &offset = lod_offset.second; | ||
|
||
absolute_table.emplace_back(); | ||
absolute_table.back().length = offset.second - offset.first; | ||
absolute_table.back().offset = offset.first; | ||
absolute_table.back().lod = lod_offset.first; | ||
} | ||
return absolute_table; | ||
} | ||
|
||
size_t CopyTensorAndLod(const platform::DeviceContext &dev_ctx, | ||
const AbsoluteRankTableItem &item, | ||
const framework::LoDTensor &x, | ||
framework::LoDTensor *out, size_t out_offset) const { | ||
auto &out_lod = *out->mutable_lod(); | ||
auto len = item.length; | ||
auto x_offset = item.offset; | ||
|
||
if (out_lod.empty()) { | ||
for (size_t i = 0; i < item.lod.size(); ++i) { | ||
out_lod.push_back(std::vector<size_t>({0})); | ||
} | ||
} | ||
|
||
for (size_t i = 0; i < out_lod.size(); ++i) { | ||
auto &out_v = out_lod[i]; | ||
auto &new_lod_v = item.lod[i]; | ||
|
||
for (auto &detail : new_lod_v) { | ||
out_v.push_back(out_v.back() + detail); | ||
} | ||
} | ||
|
||
auto x_sliced = x.Slice(x_offset, x_offset + len); | ||
auto out_sliced = out->Slice(out_offset, out_offset + len); | ||
|
||
framework::CopyFrom(x_sliced, out_sliced.place(), dev_ctx, &out_sliced); | ||
out_offset += len; | ||
return out_offset; | ||
} | ||
}; | ||
|
||
class ReorderLoDTensorByRankTableOp : public ReorderLoDTensorByRankTableBase { | ||
public: | ||
ReorderLoDTensorByRankTableOp(const std::string &type, | ||
const framework::VariableNameMap &inputs, | ||
const framework::VariableNameMap &outputs, | ||
const framework::AttributeMap &attrs) | ||
: ReorderLoDTensorByRankTableBase(type, inputs, outputs, attrs) {} | ||
|
||
protected: | ||
void process(const platform::DeviceContext &dev_ctx, | ||
const framework::LoDTensor &x, | ||
const framework::LoDRankTable &rank_table, | ||
framework::LoDTensor *out) const override { | ||
auto absolute_table = GetAbsoluteOffsetAndLengthByLoDRankTable(x); | ||
size_t out_offset = 0; | ||
out->mutable_lod()->clear(); | ||
for (auto &item : rank_table.items()) { | ||
PADDLE_ENFORCE_LT(item.index, absolute_table.size()); | ||
out_offset = CopyTensorAndLod(dev_ctx, absolute_table[item.index], x, out, | ||
out_offset); | ||
} | ||
} | ||
}; | ||
|
||
class IdentityInferShape : public framework::InferShapeBase { | ||
public: | ||
void operator()(framework::InferShapeContext *context) const override { | ||
context->SetOutputDim("Out", context->GetInputDim("X")); | ||
} | ||
}; | ||
|
||
class ReorderLodTensorByRankGradOpMaker | ||
: public framework::SingleGradOpDescMaker { | ||
public: | ||
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; | ||
|
||
protected: | ||
std::unique_ptr<framework::OpDesc> Apply() const override { | ||
auto *grad_op = new framework::OpDesc(); | ||
grad_op->SetType("reorder_lod_tensor_by_rank_grad"); | ||
grad_op->SetInput("X", OutputGrad("Out")); | ||
grad_op->SetOutput("Out", InputGrad("X")); | ||
grad_op->SetInput("RankTable", Input("RankTable")); | ||
return std::unique_ptr<framework::OpDesc>(grad_op); | ||
} | ||
}; | ||
|
||
class ReorderLoDTensorByRankGradOp : public ReorderLoDTensorByRankTableBase { | ||
public: | ||
ReorderLoDTensorByRankGradOp(const std::string &type, | ||
const framework::VariableNameMap &inputs, | ||
const framework::VariableNameMap &outputs, | ||
const framework::AttributeMap &attrs) | ||
: ReorderLoDTensorByRankTableBase(type, inputs, outputs, attrs) {} | ||
|
||
protected: | ||
void process(const platform::DeviceContext &dev_ctx, | ||
const framework::LoDTensor &x, | ||
const framework::LoDRankTable &rank_table, | ||
framework::LoDTensor *out) const override { | ||
auto absolute_table = GetAbsoluteOffsetAndLengthByLoDRankTable(x); | ||
|
||
// offsets = enumerate([item.index for item in rank_table.items()]) | ||
std::vector<std::pair<size_t, size_t>> offsets; | ||
offsets.reserve(rank_table.items().size()); | ||
for (size_t i = 0; i < rank_table.items().size(); ++i) { | ||
offsets.push_back({i, rank_table.items()[i].index}); | ||
} | ||
|
||
// offsets.sort(key=lambda x: x[1]) | ||
std::sort( | ||
offsets.begin(), offsets.end(), | ||
[](const std::pair<size_t, size_t> &a, | ||
const std::pair<size_t, size_t> &b) { return a.second < b.second; }); | ||
|
||
// Copy TensorAndLod | ||
size_t out_offset = 0; | ||
for (auto &offset : offsets) { | ||
out_offset = this->CopyTensorAndLod(dev_ctx, absolute_table[offset.first], | ||
x, out, out_offset); | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
|
||
REGISTER_OPERATOR(reorder_lod_tensor_by_rank, | ||
ops::ReorderLoDTensorByRankTableOp, | ||
ops::ReorderLodTensorByRankGradOpMaker, | ||
ops::ReorderLoDTensorByRankTableOpProtoMaker, | ||
ops::IdentityInferShape); | ||
REGISTER_OPERATOR(reorder_lod_tensor_by_rank_grad, | ||
ops::ReorderLoDTensorByRankGradOp, ops::IdentityInferShape); |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
import unittest | ||
import paddle.v2.fluid as fluid | ||
import numpy | ||
|
||
|
||
class TestReorderLoDTensor(unittest.TestCase): | ||
def test_reorder(self): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Please add Gradient test There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. It has been tested, since IG.sum() == 1 and LoD can be restored. |
||
dat = fluid.layers.data(name='input', shape=[1], lod_level=2) | ||
dat.stop_gradient = False | ||
rank_dat = fluid.layers.data(name='ref', shape=[1], lod_level=1) | ||
table = fluid.layers.lod_rank_table(rank_dat) | ||
new_dat = fluid.layers.reorder_lod_tensor_by_rank( | ||
x=dat, rank_table=table) | ||
loss = fluid.layers.mean(x=new_dat) | ||
fluid.backward.append_backward_ops(loss=loss) | ||
|
||
cpu = fluid.CPUPlace() | ||
exe = fluid.Executor(cpu) | ||
exe.run(fluid.default_startup_program()) | ||
|
||
ref = fluid.Tensor() | ||
ref_lod = [0, 3, 4, 7, 8, 14] | ||
ref.set_lod([ref_lod]) | ||
|
||
ref.set(numpy.random.random(size=[14, 1]).astype('float32'), cpu) | ||
input = fluid.Tensor() | ||
lod_level_0 = numpy.random.randint(low=1, high=5, size=5) | ||
lod_level_0 = [0] + numpy.cumsum(lod_level_0).tolist() | ||
lod_level_1 = numpy.random.randint(low=1, high=5, size=lod_level_0[-1]) | ||
lod_level_1 = [0] + numpy.cumsum(lod_level_1).tolist() | ||
|
||
input.set_lod([lod_level_0, lod_level_1]) | ||
input.set( | ||
numpy.random.random(size=[lod_level_1[-1], 1]).astype('float32'), | ||
cpu) | ||
|
||
ig = exe.run(fluid.default_main_program(), | ||
feed={'input': input, | ||
'ref': ref}, | ||
fetch_list=['input@GRAD'], | ||
return_numpy=False)[0] | ||
self.assertAlmostEqual(numpy.array(ig).sum(), 1.0, delta=0.001) | ||
self.assertEqual(input.lod(), ig.lod()) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please give a specific example to make things easier to understand.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Done.