Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

reopen linkchecker for checking broken links in websites #6748

Merged
merged 2 commits into from
Dec 20, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion doc/getstarted/build_and_install/docker_install_cn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -128,7 +128,7 @@ PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Note

AVX是一种CPU指令集,可以加速PaddlePaddle的计算。最新的PaddlePaddle Docker镜像默认
是开启AVX编译的,所以,如果您的电脑不支持AVX,需要单独
`编译 <./build_from_source_cn.rst>`_ PaddlePaddle为no-avx版本。
`编译 <./build_from_source_cn.html>`_ PaddlePaddle为no-avx版本。

以下指令能检查Linux电脑是否支持AVX:

Expand Down
2 changes: 1 addition & 1 deletion doc/getstarted/build_and_install/docker_install_en.rst
Original file line number Diff line number Diff line change
Expand Up @@ -137,7 +137,7 @@ GPU driver installed before move on.
AVX is a kind of CPU instruction can accelerate PaddlePaddle's calculations.
The latest PaddlePaddle Docker image turns AVX on by default, so, if your
computer doesn't support AVX, you'll probably need to
`build <./build_from_source_en.rst>`_ with :code:`WITH_AVX=OFF`.
`build <./build_from_source_en.html>`_ with :code:`WITH_AVX=OFF`.

The following command will tell you whether your computer supports AVX.

Expand Down
2 changes: 0 additions & 2 deletions doc/howto/usage/cluster/k8s_distributed_cn.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,6 @@

前一篇文章介绍了如何在Kubernetes集群上启动一个单机PaddlePaddle训练作业 (Job)。在这篇文章里,我们介绍如何在Kubernetes集群上进行分布式PaddlePaddle训练作业。关于PaddlePaddle的分布式训练,文章 [Cluster Training](http://www.paddlepaddle.org/docs/develop/documentation/zh/howto/usage/cluster/cluster_train_cn.html)介绍了一种通过SSH远程分发任务,进行分布式训练的方法,与此不同的是,本文将介绍在Kubernetes容器管理平台上快速构建PaddlePaddle容器集群,进行分布式训练的方案。

有关Kubernetes相关概念以及如何搭建和配置Kubernetes集群,可以参考[k8s_basis](./k8s_basis_cn.md)。

## 整体方案

在训练之前,用户将配置与训练数据切分好放在分布式文件系统预先分配好的目录中(不同的分布式文件系统,需要使用其制定的方式挂载后并导入数据),训练时,程序从此目录拷贝文件到容器内进行训练,将结果保存到此目录里。整体的结构图如下:
Expand Down
5 changes: 2 additions & 3 deletions paddle/scripts/travis/build_doc.sh
Original file line number Diff line number Diff line change
Expand Up @@ -14,9 +14,8 @@ make -j `nproc` print_operators_doc
paddle/pybind/print_operators_doc > doc/en/html/operators.json

# check websites for broken links
# It will be failed now!
#linkchecker doc/en/html/index.html
#linkchecker doc/cn/html/index.html
linkchecker doc/en/html/index.html
linkchecker doc/cn/html/index.html

# Parse Github URL
REPO=`git config remote.origin.url`
Expand Down