Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【PIR API adaptor No.242、228】 Migrate unique_consecutive/moveaxis into pir #58688

Merged
merged 5 commits into from
Nov 8, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion paddle/phi/api/yaml/ops.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -2681,7 +2681,7 @@
backward: uniform_inplace_grad

- op : unique_consecutive
args : (Tensor x, bool return_inverse = false, bool return_counts = false, int[] axis = {}, int dtype = 5)
args : (Tensor x, bool return_inverse = false, bool return_counts = false, int[] axis = {}, DataType dtype = DataType::FLOAT32)
output : Tensor(out), Tensor(index), Tensor(counts)
infer_meta :
func : UniqueConsecutiveInferMeta
Expand Down
2 changes: 1 addition & 1 deletion paddle/phi/infermeta/unary.cc
Original file line number Diff line number Diff line change
Expand Up @@ -4852,7 +4852,7 @@ void UniqueConsecutiveInferMeta(const MetaTensor& x,
bool return_inverse,
bool return_counts,
const std::vector<int>& axis,
int dtype,
DataType dtype,
MetaTensor* out,
MetaTensor* index,
MetaTensor* counts) {
Expand Down
2 changes: 1 addition & 1 deletion paddle/phi/infermeta/unary.h
Original file line number Diff line number Diff line change
Expand Up @@ -716,7 +716,7 @@ void UniqueConsecutiveInferMeta(const MetaTensor& x,
bool return_inverse,
bool return_counts,
const std::vector<int>& axis,
int dtype,
DataType dtype,
MetaTensor* out,
MetaTensor* index,
MetaTensor* counts);
Expand Down
9 changes: 4 additions & 5 deletions paddle/phi/kernels/cpu/unique_consecutive_kernel.cc
Original file line number Diff line number Diff line change
Expand Up @@ -30,12 +30,11 @@ void UniqueConsecutiveKernel(const Context& dev_ctx,
bool return_inverse,
bool return_counts,
const std::vector<int>& axis,
int dtype,
DataType dtype,
DenseTensor* out,
DenseTensor* index,
DenseTensor* counts) {
auto data_type = phi::TransToPhiDataType(dtype);
if (data_type == phi::DataType::INT32) {
if (dtype == phi::DataType::INT32) {
PADDLE_ENFORCE_LE(
x.numel(),
INT_MAX,
Expand All @@ -48,14 +47,14 @@ void UniqueConsecutiveKernel(const Context& dev_ctx,

if (axis.empty()) {
phi::VisitDataTypeTiny(
data_type,
dtype,
UniqueConsecutiveFlattenedTensorFunctor<Context, T>(
dev_ctx, x, out, return_inverse, return_counts, index, counts));
} else {
int valid_axis = axis[0];
if (valid_axis < 0) valid_axis += x.dims().size();
phi::VisitDataTypeTiny(
data_type,
dtype,
UniqueConsecutiveDimFunctor<Context, T>(dev_ctx,
x,
out,
Expand Down
9 changes: 4 additions & 5 deletions paddle/phi/kernels/gpu/unique_consecutive_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -29,12 +29,11 @@ void UniqueConsecutiveKernel(const Context& dev_ctx,
bool return_inverse,
bool return_counts,
const std::vector<int>& axis,
int dtype,
DataType dtype,
DenseTensor* out,
DenseTensor* index,
DenseTensor* counts) {
auto data_type = phi::TransToPhiDataType(dtype);
if (data_type == phi::DataType::INT32) {
if (dtype == phi::DataType::INT32) {
PADDLE_ENFORCE_LE(
x.numel() + 1,
INT_MAX,
Expand All @@ -48,15 +47,15 @@ void UniqueConsecutiveKernel(const Context& dev_ctx,
// if 'axis' is not required, flatten the Tensor.
if (axis.empty()) {
phi::VisitDataTypeTiny(
data_type,
dtype,
UniqueConsecutiveFlattenedCUDAFunctor<Context, T>(
dev_ctx, x, out, return_inverse, return_counts, index, counts));
} else {
// 'axis' is required.
int valid_axis = axis[0];
if (valid_axis < 0) valid_axis += x.dims().size();
phi::VisitDataTypeTiny(
data_type,
dtype,
UniqueConsecutiveDimsCUDAFunctor<Context, T>(dev_ctx,
x,
out,
Expand Down
2 changes: 1 addition & 1 deletion paddle/phi/kernels/unique_consecutive_kernel.h
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ void UniqueConsecutiveKernel(const Context& dev_ctx,
bool return_inverse,
bool return_counts,
const std::vector<int>& axis,
int dtype,
DataType dtype,
DenseTensor* out,
DenseTensor* index,
DenseTensor* counts);
Expand Down
2 changes: 1 addition & 1 deletion python/paddle/tensor/manipulation.py
Original file line number Diff line number Diff line change
Expand Up @@ -2481,7 +2481,7 @@ def unique_consecutive(
else:
axis = [axis]
attr_dtype = convert_np_dtype_to_dtype_(dtype)
if in_dynamic_mode():
if in_dynamic_or_pir_mode():
out, inverse, counts = _C_ops.unique_consecutive(
x, return_inverse, return_counts, axis, attr_dtype
)
Expand Down
1 change: 1 addition & 0 deletions test/legacy_test/test_transpose_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -710,6 +710,7 @@ def test_moveaxis3(self):
self.assertEqual(out.shape, [2, 3])
paddle.enable_static()

@test_with_pir_api
def test_error(self):
x = paddle.randn([2, 3, 4, 5])
# src must have the same number with dst
Expand Down
9 changes: 5 additions & 4 deletions test/legacy_test/test_unique_consecutive_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
import paddle
from paddle import base
from paddle.base import core
from paddle.pir_utils import test_with_pir_api


def reference_unique_consecutive(
Expand Down Expand Up @@ -203,6 +204,7 @@ def setUp(self):
if core.is_compiled_with_cuda():
self.places.append(base.CUDAPlace(0))

@test_with_pir_api
def check_static_result(self, place):
with base.program_guard(base.Program(), base.Program()):
paddle.enable_static()
Expand All @@ -217,7 +219,6 @@ def check_static_result(self, place):
x_np = np.random.randint(20, size=100).astype("float32")
exe = base.Executor(place)
fetches = exe.run(
base.default_main_program(),
feed={"input_x": x_np},
fetch_list=[result],
)
Expand All @@ -240,6 +241,7 @@ def setUp(self):
if core.is_compiled_with_cuda():
self.places.append(base.CUDAPlace(0))

@test_with_pir_api
def check_static_result(self, place):
with base.program_guard(base.Program(), base.Program()):
paddle.enable_static()
Expand All @@ -256,7 +258,6 @@ def check_static_result(self, place):
x_np = np.random.randint(20, size=100).astype("float32")
exe = base.Executor(place)
fetches = exe.run(
base.default_main_program(),
feed={"input_x": x_np},
fetch_list=[result],
)
Expand All @@ -281,6 +282,7 @@ def setUp(self):
if core.is_compiled_with_cuda():
self.places.append(base.CUDAPlace(0))

@test_with_pir_api
def check_static_result(self, place):
with base.program_guard(base.Program(), base.Program()):
paddle.enable_static()
Expand All @@ -297,7 +299,6 @@ def check_static_result(self, place):
x_np = np.random.randint(20, size=100).astype("float32")
exe = base.Executor(place)
fetches = exe.run(
base.default_main_program(),
feed={"input_x": x_np},
fetch_list=[result],
)
Expand Down Expand Up @@ -347,7 +348,7 @@ def setUp(self):
}

def test_check_output(self):
self.check_output()
self.check_output(check_pir=True)


if __name__ == "__main__":
Expand Down