Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【Hackathon 5th No.52】 为 Paddle 新增 unsqueeze 的 spmd 切分推导规则 -part #58296

Merged
merged 9 commits into from
Nov 6, 2023
9 changes: 8 additions & 1 deletion paddle/phi/infermeta/spmd_rules/rules.h
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ limitations under the License. */
#include "paddle/phi/infermeta/spmd_rules/softmax.h"
#include "paddle/phi/infermeta/spmd_rules/split.h"
#include "paddle/phi/infermeta/spmd_rules/transpose.h"
#include "paddle/phi/infermeta/spmd_rules/unsqueeze.h"

/**
* Design Notes:
Expand Down Expand Up @@ -71,7 +72,7 @@ PD_REGISTER_SPMD_RULE(

// default data parallel rule
PD_REGISTER_SPMD_RULE(
unsqueeze,
default_data_parallel,
PD_INFER_SPMD(phi::distributed::DefaultDataParallelInferSpmd),
PD_INFER_SPMD(phi::distributed::DefaultDataParallelInferSpmdReverse));
PD_REGISTER_SPMD_RULE(
Expand All @@ -85,6 +86,12 @@ PD_REGISTER_SPMD_RULE(
PD_INFER_SPMD(phi::distributed::ReplicatedInferSpmd),
PD_INFER_SPMD(phi::distributed::ReplicatedInferSpmdReverse));

// unsqueeze rule
PD_REGISTER_SPMD_RULE(
unsqueeze,
PD_INFER_SPMD(phi::distributed::UnsqueezeInferSpmd),
PD_INFER_SPMD(phi::distributed::UnsqueezeInferSpmdReverse));

// elementwise unary rule
PD_REGISTER_SPMD_RULE(
assign,
Expand Down
206 changes: 206 additions & 0 deletions paddle/phi/infermeta/spmd_rules/unsqueeze.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,206 @@
/* Copyright (c) 2023 PaddlePaddle Authors. All Rights resized.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/infermeta/spmd_rules/unsqueeze.h"
#include <algorithm>
#include <numeric>

#include "glog/logging.h"

#include "paddle/phi/core/distributed/auto_parallel/dist_attr.h"
#include "paddle/phi/core/distributed/auto_parallel/inferspmd_utils.h"
#include "paddle/phi/core/distributed/auto_parallel/utils.h"
#include "paddle/phi/infermeta/spmd_rules/dim_trans.h"
#include "paddle/phi/infermeta/spmd_rules/utils.h"

namespace phi {
namespace distributed {

using phi::distributed::auto_parallel::str_join;

std::vector<DimTrans*> MakeUnsqueezeDimTrans(
const std::vector<int64_t>& x_shape,
std::vector<int64_t>* out_shape,
const std::vector<int64_t>& axis) {
int64_t n = static_cast<int64_t>(x_shape.size() + axis.size());
std::vector<DimTrans*> ret;
ret.resize(n);
out_shape->resize(n);
fill(ret.begin(), ret.end(), new Singleton());
fill(out_shape->begin(), out_shape->end(), 1);

for (int64_t i = 0, j = 0; i < n; i++) {
auto it = find(axis.begin(), axis.end(), i);

if (it == axis.end()) {
if (x_shape[j] != 1) {
ret[i] = new InputDim(j);
(*out_shape)[i] = x_shape[j];
}

j++;
}
}

return ret;
}

std::vector<DimTrans*> MakeUnsqueezeDimTransReverse(
const std::vector<int64_t>& out_shape,
const std::vector<int64_t>& axis,
const int& x_ndim,
const int& out_ndim) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

整型参数直接传 int 就可以,不用传 const 引用,可以在下个 pr 修复

std::vector<DimTrans*> ret;
ret.resize(x_ndim);
fill(ret.begin(), ret.end(), new Singleton());

for (int64_t i = 0, j = 0; i < out_ndim; i++) {
auto it = find(axis.begin(), axis.end(), i);

if (it == axis.end()) {
if (out_shape[i] != 1) {
ret[j] = new InputDim(i);
}

j++;
}
}

return ret;
}

SpmdInfo UnsqueezeInferSpmd(const DistMetaTensor& x,
const std::vector<int64_t>& axis) {
// Step0: Verify input args based on unsqueeze logic
auto x_shape = phi::vectorize(x.dims());
int x_ndim = x_shape.size();
auto x_dist_attr_src = x.dist_attr();
std::vector<int64_t> x_dims_mapping = x_dist_attr_src.dims_mapping();
PADDLE_ENFORCE_EQ(
x_ndim,
x_dims_mapping.size(),
phi::errors::InvalidArgument("The Tensor X's rank [%d] and X's "
"dims_mapping size [%d] are not matched.",
x_ndim,
x_dims_mapping.size()));

// Step1: Build the transformation from
// the original shape to the target shape

std::vector<int64_t> out_shape;
std::vector<int64_t> axis_copy(axis);

for (int64_t i = 0; i < static_cast<int64_t>(axis_copy.size()); i++) {
if (axis_copy[i] < 0) {
axis_copy[i] += x_ndim + 1;
}
}

std::vector<DimTrans*> trans =
MakeUnsqueezeDimTrans(x_shape, &out_shape, axis_copy);

// Step2: Infer the dims mapping of input (if reshard is
// needed) and output from the dimension transformation.
std::vector<std::vector<int64_t>> dims_mapping_vec =
InferFromDimTrans(x, trans);

// Step3: Update the dist attributes of input
// and output with the inferred dims mapping.
TensorDistAttr x_dist_attr_dst(x_dist_attr_src);
x_dist_attr_dst.set_dims_mapping(dims_mapping_vec[0]);
TensorDistAttr out_dist_attr(x_dist_attr_src);
out_dist_attr.set_dims_mapping(dims_mapping_vec[1]);

VLOG(4) << "UnsqueezeInferSpmd: X shape: [" << str_join(x_shape)
<< "] Out shape: [" << str_join(out_shape) << "]";
VLOG(4) << "Transformation from input to output:";
for (int64_t i = 0, n = static_cast<int64_t>(trans.size()); i < n; i++) {
DimTrans* t = trans[i];
VLOG(4) << "\tOut axis[" << i << "]: " << t->to_string();
}
VLOG(4) << "X dims_mapping_src: [" << str_join(x_dims_mapping)
<< "] dims_mapping_dst: [" << str_join(dims_mapping_vec[0])
<< "]\n Out dims_mapping: [" << str_join(dims_mapping_vec[1])
<< "]\n\n";

CleanUp();

return {{x_dist_attr_dst}, {out_dist_attr}};
}

SpmdInfo UnsqueezeInferSpmdReverse(const DistMetaTensor& x,
const DistMetaTensor& out,
const std::vector<int64_t>& axis) {
// Step0: Verify input args based on unsqueeze logic
auto x_shape = phi::vectorize(x.dims());
int x_ndim = x_shape.size();
auto out_shape = phi::vectorize(out.dims());
int out_ndim = out_shape.size();
auto out_dist_attr_src = out.dist_attr();
std::vector<int64_t> out_dims_mapping = out_dist_attr_src.dims_mapping();
PADDLE_ENFORCE_EQ(
out_ndim,
out_dims_mapping.size(),
phi::errors::InvalidArgument("The Tensor Out's rank [%d] and Out's "
"dims_mapping size [%d] are not matched.",
out_ndim,
out_dims_mapping.size()));

// Step1: Build the transformation from the output shape
// to original shape. This function infers the dims mapping
// from output to input, we first get the transformation
// from output to input so that we can infer the dims mapping
// with the map from output axes to input axes.

std::vector<int64_t> axis_copy(axis);

for (int64_t i = 0; i < static_cast<int64_t>(axis_copy.size()); i++) {
if (axis_copy[i] < 0) {
axis_copy[i] += x_ndim + 1;
}
}

std::vector<DimTrans*> trans =
MakeUnsqueezeDimTransReverse(out_shape, axis_copy, x_ndim, out_ndim);

// Step2: Infer the dims mapping of input with
// output's dims_mapping and the transformation.
std::vector<std::vector<int64_t>> dims_mapping_vec =
InferFromDimTrans(out, trans);

// Step3: Update the dist attributes of input
// and output with the inferred dims mapping
TensorDistAttr out_dist_attr_dst(out_dist_attr_src);
out_dist_attr_dst.set_dims_mapping(dims_mapping_vec[0]);
TensorDistAttr x_dist_attr(x.dist_attr());
x_dist_attr.set_dims_mapping(dims_mapping_vec[1]);

VLOG(4) << "UnsqueezeInferSpmdReverse: Out shape: [" << str_join(out_shape)
<< "] X shape: [" << str_join(x_shape) << "]";
VLOG(4) << "Transformation from output to input:";
for (int64_t i = 0, n = trans.size(); i < n; i++) {
DimTrans* t = trans[i];
VLOG(4) << "\tX axis[" << i << "]: " << t->to_string();
}
VLOG(4) << "Out dims_mapping_src: [" << str_join(out_dims_mapping) << "] "
<< "dims_mapping_dst: [" << str_join(dims_mapping_vec[0]) << "]";
VLOG(4) << "X dims_mapping: [" << str_join(dims_mapping_vec[1]) << "]\n\n";

CleanUp();

return {{x_dist_attr}, {out_dist_attr_dst}};
}

} // namespace distributed
} // namespace phi
32 changes: 32 additions & 0 deletions paddle/phi/infermeta/spmd_rules/unsqueeze.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
/* Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>

#include "paddle/phi/core/distributed/auto_parallel/dist_meta_tensor.h"
#include "paddle/phi/core/distributed/type_defs.h"

namespace phi {
namespace distributed {

SpmdInfo UnsqueezeInferSpmd(const DistMetaTensor& x,
const std::vector<int64_t>& axis);

SpmdInfo UnsqueezeInferSpmdReverse(const DistMetaTensor& x,
const DistMetaTensor& out,
const std::vector<int64_t>& axis);
} // namespace distributed
} // namespace phi
1 change: 1 addition & 0 deletions test/auto_parallel/spmd_rules/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ if(WITH_DISTRIBUTE)
py_test_modules(test_layer_norm_rule MODULES test_layer_norm_rule)
py_test_modules(test_slice_rule MODULES test_slice_rule)
py_test_modules(test_flatten_rule MODULES test_flatten_rule)
py_test_modules(test_unsqueeze_rule MODULES test_unsqueeze_rule)
py_test_modules(test_concat_rule MODULES test_concat_rule)
# End of unittests WITH single card WITHOUT timeout

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ class TestDefaultDataParallelSPMDRule(unittest.TestCase):
def setUp(self):
# After replaced all spmd rules by phi impl, we can recover the
# api name to `get_spmd_rule`
self.rule = core.get_phi_spmd_rule("unsqueeze")
self.rule = core.get_phi_spmd_rule("default_data_parallel")

x_shape = [10, 10, 32, 48]
y_shape = [32, 48]
Expand Down
Loading