Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[AutoParallel] Add paddle.distributed.reshard python API. #57293

Merged
merged 8 commits into from
Sep 19, 2023
38 changes: 38 additions & 0 deletions paddle/fluid/pybind/auto_parallel_py.cc
Original file line number Diff line number Diff line change
Expand Up @@ -32,12 +32,16 @@

#include "paddle/fluid/distributed/auto_parallel/spmd_rules/common.h"
#include "paddle/fluid/distributed/auto_parallel/spmd_rules/dist_tensor_spec.h"
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/backends/context_pool.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/distributed/auto_parallel/dist_tensor.h"
#include "paddle/phi/core/distributed/auto_parallel/p_to_r_reshard_function.h"
#include "paddle/phi/core/distributed/auto_parallel/r_to_p_reshard_function.h"
#include "paddle/phi/core/distributed/auto_parallel/r_to_s_reshard_function.h"
#include "paddle/phi/core/distributed/auto_parallel/s_to_r_reshard_function.h"
#include "paddle/phi/core/distributed/auto_parallel/s_to_s_reshard_function.h"
#include "paddle/phi/core/enforce.h"

#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/phi/infermeta/spmd_rules/rules.h"
Expand Down Expand Up @@ -630,6 +634,40 @@ void BindAutoParallel(py::module *m) {
},
py::return_value_policy::reference);

m->def(
"reshard",
[](py::handle py_tensor, const TensorDistAttr &dist_attr) {
auto tensor = CastPyArg2Tensor(py_tensor.ptr(), 0);
auto dev_ctx = phi::DeviceContextPool::Instance().Get(tensor.place());
std::shared_ptr<phi::distributed::DistTensor> dist_out_ptr = nullptr;
if (phi::distributed::DistTensor::classof(tensor.impl().get())) {
auto tensor_in = tensor.impl();
if (tensor_in) {
phi::distributed::DistTensor *dist_tensor =
static_cast<phi::distributed::DistTensor *>(tensor_in.get());
if (dist_tensor->dist_attr() != dist_attr) {
VLOG(6) << "reshard func, reshard tensor from "
<< dist_tensor->dist_attr() << " to " << dist_attr;
auto *func = phi::distributed::ChooseProperReshardFunction(
*dist_tensor, dist_attr);
dist_out_ptr = func->Eval(dev_ctx, *dist_tensor, dist_attr);
} else {
dist_out_ptr =
std::static_pointer_cast<phi::distributed::DistTensor>(
tensor_in);
}
}
return paddle::Tensor(dist_out_ptr);
} else {
PADDLE_THROW(phi::errors::InvalidArgument(
"The input tensor of shard function should be "
"``phi::distributed::DistTensor``. "
"However it's %s",
typeid(tensor.impl().get()).name()));
}
},
py::return_value_policy::reference);

// TODO(liuzhenhai): DistributedMapper is not used for now, but
// dist_mapper_test need the symbols forch DistributedMapper to be linked,
// remove it latter
Expand Down
2 changes: 2 additions & 0 deletions python/paddle/distributed/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,7 @@
from .auto_parallel import shard_op # noqa: F401
from .auto_parallel.api import shard_tensor # noqa: F401
from .auto_parallel.api import dtensor_from_fn # noqa: F401
from .auto_parallel.api import reshard # noqa: F401
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里是不是还需要将reshard加到all list中

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done, thx.


from .fleet import BoxPSDataset # noqa: F401

Expand Down Expand Up @@ -128,4 +129,5 @@
"DistAttr",
"shard_tensor",
"dtensor_from_fn",
"reshard",
]
45 changes: 45 additions & 0 deletions python/paddle/distributed/auto_parallel/api.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,3 +178,48 @@ def dtensor_from_fn(fn, dist_attr, *args, **kwargs):
"""
tensor = fn(*args, **kwargs)
return shard_tensor(tensor, dist_attr=dist_attr)


def reshard(dist_tensor, dist_attr):
"""
Reshard a distributed ``paddle.Tensor`` with given distributed attributes.

Args:
dist_tensor(Tensor): the distributed tensor to be resharded.
dist_attr(paddle.distributed.DistAttr): Specify how tensors are distributed or sliced on ProcessMesh.

Returns:
Tensor: A Distributed Tensor reshared with distributed attributes.

Examples:

.. code-block:: python

import paddle
import paddle.distributed as dist

mesh = dist.ProcessMesh([[2, 4, 5], [0, 1, 3]], dim_names=["x", "y"])
dist_attr = dist.DistAttr(mesh=mesh, sharding_specs=['x', 'y'])

out_mesh = dist.ProcessMesh([[2, 4, 5], [0, 1, 3]], dim_names=["x", "y"])
out_dist_attr = dist.DistAttr(mesh=out_mesh, sharding_specs=[None, None])

# dense tensor
a = paddle.to_tensor([[1,2,3],
[5,6,7]])
# distributed tensor
d_tensor = dist.shard_tensor(a, dist_attr=dist_attr)

out_d_tensor = dist.reshard(d_tensor, out_dist_attr)

print(d_tensor)
print(out_d_tensor)
"""

if paddle.framework.in_dynamic_mode():
return paddle.base.core.reshard(dist_tensor, dist_attr)
else:
# TODO(GhostScreaming): Support static DistTensor later.
raise RuntimeError(
"paddle.dist.reshard only support dynamic graph now. It will be supported for static graph later."
)
2 changes: 2 additions & 0 deletions test/auto_parallel/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -186,6 +186,8 @@ if(WITH_DISTRIBUTE AND WITH_GPU)
py_test_modules(test_engine_save_load MODULES test_engine_save_load)
py_test_modules(test_rule_based_tuner MODULES test_rule_based_tuner)
py_test_modules(test_dist_tensor MODULES test_dist_tensor)
py_test_modules(test_reshard_api MODULES test_reshard_api)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个CMakeLists里面对不同性质单测做了划分,reshard是个多卡单测,看看是不是和其他reshard_x_to_x单测放到一起,最好也加个超时控制,多卡单测容易超时

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done, thx.

py_test_modules(test_api_dist_branch MODULES test_api_dist_branch)
py_test_modules(test_shard_tensor_api MODULES test_shard_tensor_api)
py_test_modules(test_cost_interface MODULES test_cost_interface)
# End of unittests WITH single card WITHOUT timeout
Expand Down
87 changes: 87 additions & 0 deletions test/auto_parallel/reshard_api.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import numpy as np

import paddle
import paddle.distributed as dist


class TestReshardAPI:
def __init__(self):
self._shape = eval(os.getenv("shape"))
self._dtype = os.getenv("dtype")
self._seeds = eval(os.getenv("seeds"))
self._backend = os.getenv("backend")
self._shard = eval(os.getenv("shard"))
self._mesh = dist.ProcessMesh([0, 1], dim_names=["x"])

def run_test_cases(self):
if self._backend == "cpu":
paddle.set_device("cpu")
self.test_case_p_to_r()

def test_case_p_to_r(self):
a = paddle.ones(self._shape)
in_shard_specs = [None for i in range(len(self._shape))]
out_shard_specs = [None for i in range(len(self._shape))]
dist_attr = dist.DistAttr(
mesh=self._mesh, sharding_specs=in_shard_specs
)
dist_attr._set_partial_dims([0])
out_dist_attr = dist.DistAttr(
mesh=self._mesh, sharding_specs=out_shard_specs
)

input_tensor = dist.shard_tensor(a, dist_attr=dist_attr)
output_tensor = dist.reshard(input_tensor, dist_attr=out_dist_attr)

input_tensor = dist.shard_tensor(a, dist_attr=dist_attr)
assert np.equal(output_tensor.shape, input_tensor.shape).all()
np.testing.assert_equal(output_tensor._local_value().numpy(), a.numpy())

def test_case_r_to_s(self):
a = paddle.ones(self._shape)
in_shard_specs = [None for i in range(len(self._shape))]
out_shard_specs = [None for i in range(len(self._shape))]
out_shard_specs[self._shard] = "x"
dist_attr = dist.DistAttr(
mesh=self._mesh, sharding_specs=in_shard_specs
)
out_dist_attr = dist.DistAttr(
mesh=self._mesh, sharding_specs=out_shard_specs
)

input_tensor = dist.shard_tensor(a, dist_attr=dist_attr)
output_tensor = dist.reshard(input_tensor, dist_attr=out_dist_attr)

out_shape = list(self._shape)
if out_shape[self._shard] % 2 == 0:
out_shape[self._shard] = out_shape[self._shard] // 2
np.testing.assert_equal(output_tensor.numpy(), input_tensor.numpy())
else:
out_shape[self._shard] = (
out_shape[self._shard] // 2
if dist.get_rank() == 1
else out_shape[self._shard] // 2 + 1
)

assert np.equal(output_tensor.shape, input_tensor.shape).all()
assert np.equal(output_tensor._local_shape, out_shape).all()


if __name__ == '__main__':
TestReshardAPI().run_test_cases()
45 changes: 45 additions & 0 deletions test/auto_parallel/test_reshard_api.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import collective.test_communication_api_base as test_base


class TestReshardAPI(test_base.CommunicationTestDistBase):
def setUp(self):
super().setUp(num_of_devices=2, timeout=120)
self._default_envs = {
"shape": "(10, 20)",
"dtype": "float32",
"seeds": str(self._seeds),
"shard": "0",
}
self._changeable_envs = {
"backend": ["cpu", "gpu"],
}

def test_reshard_api(self):
envs_list = test_base.gen_product_envs_list(
self._default_envs, self._changeable_envs
)
for envs in envs_list:
self.run_test_case(
"reshard_api.py",
user_defined_envs=envs,
)


if __name__ == "__main__":
unittest.main()