Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add num_splist for flash_attn_bwd and FlashAttnUnpaddedGradKernel #56363

Merged
merged 10 commits into from
Sep 4, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 10 additions & 5 deletions paddle/phi/kernels/gpu/flash_attn_grad_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,11 @@ DECLARE_bool(cudnn_deterministic);

namespace phi {

int get_num_split() {
// 0 for an internal heuristic, which is optimal
return FLAGS_cudnn_deterministic ? 1 : 0;
}

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个函数,以及kernel中两处int num_splits = get_num_split();建议直接封装在FlashAttnBwdParamsV2里面。

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

下个PR再改

template <typename T, typename Context>
void FlashAttnUnpaddedGradImpl(const Context& ctx,
const DenseTensor& q,
Expand Down Expand Up @@ -236,11 +241,7 @@ void FlashAttnUnpaddedGradKernel(const Context& ctx,
const int64_t total_k = k.dims()[0];
const int64_t num_heads_k = k.dims()[1];

// TODO(umiswing): add deterministic in fa2.
// int num_splits = 0; // 0 for an internal heuristic, which is optimal
// if (FLAGS_cudnn_deterministic) {
// num_splits = 1;
// }
int num_splits = get_num_split();

// TODO(umiswing): add shape check
PADDLE_ENFORCE_EQ(
Expand Down Expand Up @@ -294,6 +295,7 @@ void FlashAttnUnpaddedGradKernel(const Context& ctx,
params.scale,
params.causal,
params.is_bf16,
num_splits,
stream,
params.seed,
params.offset);
Expand Down Expand Up @@ -401,6 +403,8 @@ void FlashAttnGradKernel(const Context& ctx,
VLOG(10) << "FlashAttn bwd seed: " << params.seed
<< ", offset: " << params.offset;

int num_splits = get_num_split();

bool succ = phi::dynload::flash_attn_bwd(dout.data(),
q.data(),
k.data(),
Expand All @@ -426,6 +430,7 @@ void FlashAttnGradKernel(const Context& ctx,
params.scale,
params.causal,
params.is_bf16,
num_splits,
stream,
params.seed,
params.offset);
Expand Down
208 changes: 208 additions & 0 deletions test/legacy_test/test_flash_attention_deterministic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,208 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个单测挪出来了吗?那需要加到GPUPS CI跑的单测列表里面去,下个PR加下吧。

#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
import unittest

import numpy as np

import paddle
import paddle.nn.functional as F
from paddle.device import core
from paddle.nn.functional.flash_attention import (
flash_attention,
scaled_dot_product_attention,
)


def get_cuda_version():
result = os.popen("nvcc --version").read()
regex = r'release (\S+),'
match = re.search(regex, result)
if match:
num = str(match.group(1))
integer, decimal = num.split('.')
return int(integer) * 1000 + int(float(decimal) * 10)
else:
return -1


def attention_naive(q, k, v, causal=False):
qt = paddle.transpose(q, [0, 2, 1, 3])
kt = paddle.transpose(k, [0, 2, 1, 3])
vt = paddle.transpose(v, [0, 2, 1, 3])
scale = 1.0 / np.sqrt(q.shape[-1])
s = paddle.matmul(qt, paddle.transpose(kt, [0, 1, 3, 2]))
s = paddle.scale(s, scale)
p = (
paddle.incubate.softmax_mask_fuse_upper_triangle(s)
if causal
else F.softmax(s)
)
o = paddle.matmul(p, vt)
return paddle.transpose(o, [0, 2, 1, 3])


is_sm8x = (
core.is_compiled_with_cuda()
and paddle.device.cuda.get_device_capability()[0] == 8
and paddle.device.cuda.get_device_capability()[1] >= 0
)

is_sm90 = (
core.is_compiled_with_cuda()
and paddle.device.cuda.get_device_capability()[0] == 9
and paddle.device.cuda.get_device_capability()[1] == 0
)

is_sm_supported = is_sm8x or is_sm90


@unittest.skipIf(
not core.is_compiled_with_cuda()
or get_cuda_version() < 11040
or not is_sm_supported,
"core is not compiled with CUDA and cuda version need larger than or equal to 11.4"
"and device's compute capability must be 8.x or 90",
)
class TestFlashAttentionAPIFlag(unittest.TestCase):
def setUp(self):
self.place = paddle.CUDAPlace(0)
self.shape = (2, 128, 8, 16)
self.dtype = 'float16'
self.dropout = 0.0
self.causal = False
self.return_softmax = False
self.use_sdp_kernel = False
self.use_sdp_api = False

def flash_attn_compute(self, query, key, value):
# test dynamic
paddle.disable_static()

q = paddle.to_tensor(
query, place=self.place, dtype=self.dtype, stop_gradient=False
)
k = paddle.to_tensor(
key, place=self.place, dtype=self.dtype, stop_gradient=False
)
v = paddle.to_tensor(
value, place=self.place, dtype=self.dtype, stop_gradient=False
)

q_ = paddle.to_tensor(
query, place=self.place, dtype=self.dtype, stop_gradient=False
)
k_ = paddle.to_tensor(
key, place=self.place, dtype=self.dtype, stop_gradient=False
)
v_ = paddle.to_tensor(
value, place=self.place, dtype=self.dtype, stop_gradient=False
)

if self.use_sdp_kernel:
with paddle.nn.functional.sdp_kernel(
enable_math=self.enable_math,
enable_flash=self.enable_flash,
enable_mem_efficient=self.enable_mem_efficient,
):
if self.use_sdp_api:
out = scaled_dot_product_attention(
q, k, v, None, self.dropout, self.causal
)
else:
out, _ = flash_attention(
q, k, v, self.dropout, self.causal, self.return_softmax
)

else:
out, _ = flash_attention(
q, k, v, self.dropout, self.causal, self.return_softmax
)
out_ = attention_naive(q_, k_, v_, self.causal)

out.backward()
out_.backward()

self.assertEqual(q.grad.shape, q.shape)
self.assertEqual(q_.grad.shape, q.shape)

np.testing.assert_allclose(
q.grad.numpy(), q_.grad.numpy(), rtol=5e-03, atol=1e-03
)

return out, out_, q.grad.numpy(), k.grad.numpy(), v.grad.numpy()

def test_all_flag(self):
paddle.set_flags({'FLAGS_cudnn_deterministic': 1})
query = np.random.random(self.shape)
key = np.random.random(self.shape)
value = np.random.random(self.shape)

out1, out1_, q_grad1, k_grad1, v_grad1 = self.flash_attn_compute(
query, key, value
)

np.testing.assert_allclose(out1.numpy(), out1_, rtol=5e-03, atol=1e-03)

out2, out2_, q_grad2, k_grad2, v_grad2 = self.flash_attn_compute(
query, key, value
)
self.assertTrue(np.equal(out1.numpy(), out2.numpy()).all())
self.assertTrue(np.equal(q_grad1, q_grad2).all())
self.assertTrue(np.equal(k_grad1, k_grad2).all())
self.assertTrue(np.equal(v_grad1, v_grad2).all())
paddle.set_flags({'FLAGS_cudnn_deterministic': 0})


class TestFlashAttentionAPIFlagTest1(TestFlashAttentionAPIFlag):
def setUp(self):
self.place = paddle.CUDAPlace(0)
self.shape = (2, 128, 8, 16)
self.dtype = paddle.float16
self.dropout = 0.0
self.causal = False
self.return_softmax = False
self.use_sdp_kernel = False


class TestFlashAttentionAPIFlagTest2(TestFlashAttentionAPIFlag):
def setUp(self):
self.place = paddle.CUDAPlace(0)
self.shape = (8, 1024, 16, 256)
self.dtype = paddle.float16
self.dropout = 0.0
self.causal = False
self.return_softmax = False
self.use_sdp_kernel = False


class TestSDPAttentionAPIFlagTest(TestFlashAttentionAPIFlag):
def setUp(self):
self.place = paddle.CUDAPlace(0)
self.shape = (8, 1024, 16, 128)
self.dtype = paddle.float16
self.dropout = 0.0
self.causal = False
self.return_softmax = False
self.use_sdp_kernel = True
self.use_sdp_api = True
self.enable_math = True
self.enable_flash = False
self.enable_mem_efficient = False


if __name__ == '__main__':
unittest.main()