Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix A100 fused linear grad add ut bug #56136

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 39 additions & 22 deletions test/legacy_test/test_fused_linear_param_grad_add.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ def recreate(x, multi_precision):
return paddle.to_tensor(x.numpy())


def run_ground_truth(x, dy, dweight, dbias, multi_precision):
def run_ground_truth(x, dy, dweight, dbias, multi_precision, has_bias):
x, dy, dweight, dbias = recreate([x, dy, dweight, dbias], multi_precision)

dweight_tmp = paddle.matmul(
Expand All @@ -69,24 +69,35 @@ def run_ground_truth(x, dy, dweight, dbias, multi_precision):
assert dweight.dtype == dweight.dtype
dweight += dweight_tmp

dbias_tmp = dy.reshape([-1, dy.shape[-1]]).sum(axis=0)
if dbias is None:
dbias = dbias_tmp
else:
assert dbias.shape == dbias_tmp.shape
assert dbias.dtype == dbias_tmp.dtype
dbias += dbias_tmp
if has_bias:
dbias_tmp = dy.reshape([-1, dy.shape[-1]]).sum(axis=0)
if dbias is None:
dbias = dbias_tmp
else:
assert dbias.shape == dbias_tmp.shape
assert dbias.dtype == dbias_tmp.dtype
dbias += dbias_tmp

return promote_dtype(dweight).numpy(), promote_dtype(dbias).numpy()
return promote_dtype(dweight).numpy(), promote_dtype(dbias).numpy()
else:
return promote_dtype(dweight).numpy()


def run_fused_linear_param_grad_add(x, dy, dweight, dbias, multi_precision):
def run_fused_linear_param_grad_add(
x, dy, dweight, dbias, multi_precision, has_bias
):
dweight_new, dbias_new = _C_ops.fused_linear_param_grad_add(
x, dy, dweight, dbias, multi_precision
x, dy, dweight, dbias, multi_precision, has_bias
)
if dweight is not None:
assert dweight_new.data_ptr() == dweight.data_ptr()
return promote_dtype(dweight_new).numpy(), promote_dtype(dbias_new).numpy()
if has_bias:
return (
promote_dtype(dweight_new).numpy(),
promote_dtype(dbias_new).numpy(),
)
else:
return promote_dtype(dweight_new).numpy()


class TestMainClassBase(unittest.TestCase):
Expand All @@ -103,7 +114,9 @@ def rand(self, shape, dtype=None):
x = paddle.to_tensor(x)
return x.astype(dtype or self.dtype)

def generate_rand_inputs(self, has_dweight, has_dbias, multi_precision):
def generate_rand_inputs(
self, has_dweight, has_dbias, multi_precision, has_bias
):
x_shape = self.shape
dy_shape = self.shape[:-1] + [self.output_size]
dweight_shape = [self.shape[-1], self.output_size]
Expand All @@ -118,22 +131,23 @@ def generate_rand_inputs(self, has_dweight, has_dbias, multi_precision):
else:
dweight = None

if has_dbias:
if has_bias and has_dbias:
dbias = self.rand(dbias_shape)
if multi_precision:
dbias = promote_dtype(dbias)
else:
dbias = None
return x, dy, dweight, dbias

def check_main(self, has_dweight, has_dbias, multi_precision):
print(has_dweight, has_dbias, multi_precision)
def check_main(self, has_dweight, has_dbias, multi_precision, has_bias):
x, dy, dweight, dbias = self.generate_rand_inputs(
has_dweight, has_dbias, multi_precision
has_dweight, has_dbias, multi_precision, has_bias
)
res1 = run_ground_truth(
x, dy, dweight, dbias, multi_precision, has_bias
)
res1 = run_ground_truth(x, dy, dweight, dbias, multi_precision)
res2 = run_fused_linear_param_grad_add(
x, dy, dweight, dbias, multi_precision
x, dy, dweight, dbias, multi_precision, has_bias
)
self.assertEqual(len(res1), len(res2))
for r1, r2 in zip(res1, res2):
Expand All @@ -153,9 +167,12 @@ def test_main(self):
return

for has_dweight in [False, True]:
for has_dbias in [False, True]:
for multi_precision in [False, True]:
self.check_main(has_dweight, has_dbias, multi_precision)
for has_bias in [False, True]:
for has_dbias in [False, True]:
for multi_precision in [False, True]:
self.check_main(
has_dweight, has_dbias, multi_precision, has_bias
)


class TestMainClassBF16(TestMainClassBase):
Expand Down
2 changes: 1 addition & 1 deletion tools/gpups_test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.

# Disable Test list: test_fused_linear_param_grad_add

serial_list="^test_conv2d_op$|\
^test_conv2d_transpose_op$|\
Expand Down Expand Up @@ -69,6 +68,7 @@ parallel_list="^init_phi_test$|\
^test_fused_gemm_epilogue_op$|\
^test_fused_gemm_epilogue_op_with_es$|\
^test_fused_layernorm_residual_dropout_bias$|\
^test_fused_linear_param_grad_add$|\
^test_fused_linear_pass$|\
^test_fused_matmul_bias$|\
^test_fused_multi_transformer_decoder_pass$|\
Expand Down