Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Paddle-TRT] add flip op #55688

Merged
merged 6 commits into from
Jul 27, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions paddle/fluid/inference/api/analysis_predictor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2917,6 +2917,7 @@ USE_TRT_CONVERTER(preln_groupnorm_act)
USE_TRT_CONVERTER(cumsum)
USE_TRT_CONVERTER(assign)
USE_TRT_CONVERTER(unbind)
USE_TRT_CONVERTER(flip)
#if IS_TRT_VERSION_GE(8522)
USE_TRT_CONVERTER(flash_multihead_matmul)
USE_TRT_CONVERTER(cross_multihead_matmul)
Expand Down
3 changes: 2 additions & 1 deletion paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -108,7 +108,8 @@ list(
temporal_shift_op.cc
einsum_op.cc
unbind_op.cc
assign_op.cc)
assign_op.cc
flip_op.cc)

if(${TENSORRT_MAJOR_VERSION} GREATER_EQUAL 7)
list(APPEND CONVERT_FILES emb_eltwise_layernorm.cc
Expand Down
83 changes: 83 additions & 0 deletions paddle/fluid/inference/tensorrt/convert/flip_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
/* Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class FlipOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
VLOG(4) << "convert a flip op to tensorrt layer";

framework::OpDesc op_desc(op, nullptr);
// Declare inputs
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
auto input_dims = input->getDimensions();

// Get Attrs
std::vector<int> axis =
PADDLE_GET_CONST(std::vector<int>, op_desc.GetAttr("axis"));
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

原生op定义中,axis 可以是 int也可以是list(vector),这里看起来只考虑了list 的情况?

Copy link
Contributor Author

@ming1753 ming1753 Jul 27, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

原生op通过在python源代码中转成list支持int,convert时候只能拿到vector

for (size_t i = 0; i < axis.size(); ++i) {
axis[i] += (axis[i] < 0) ? input_dims.nbDims : 0;
}

nvinfer1::ITensor* shape_tensor = Shape(input);
// getAxisLength default is a scalar
auto getAxisLength = [&](int axis, bool scalar = true) {
int d = input_dims.d[axis];
if (d >= 0) {
return Add1DConstantLayer(d, "", scalar);
} else {
return GetEleTensorOfShape(shape_tensor, axis, scalar);
}
};
for (size_t i = 0; i < axis.size(); ++i) {
auto loop = TRT_ENGINE_ADD_LAYER(engine_, Loop);
nvinfer1::ITensor* tripLimit = getAxisLength(axis[i]);
loop->addTripLimit(*tripLimit, nvinfer1::TripLimit::kCOUNT);
auto iterator = loop->addIterator(*input, axis[i], true);
std::vector<int32_t> zero_vec{0};
std::vector<int32_t> one_vec{1};
auto zero = Add1DConstantLayer(zero_vec);
auto one = Add1DConstantLayer(one_vec);
nvinfer1::IRecurrenceLayer* iRec = loop->addRecurrence(*zero);
nvinfer1::ITensor* iCur = iRec->getOutput(0);
auto iNext = TRT_ENGINE_ADD_LAYER(engine_,
ElementWise,
*iCur,
*one,
nvinfer1::ElementWiseOperation::kSUM);
iRec->setInput(1, *iNext->getOutput(0));
nvinfer1::ILoopOutputLayer* loopOut = loop->addLoopOutput(
*iterator->getOutput(0), nvinfer1::LoopOutput::kCONCATENATE, axis[i]);
loopOut->setInput(1, *tripLimit);
input = loopOut->getOutput(0);
}

auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Identity, *input);
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(layer, "flip", {output_name}, test_mode);
}
};

} // namespace tensorrt
} // namespace inference
} // namespace paddle

REGISTER_TRT_OP_CONVERTER(flip, FlipOpConverter);
18 changes: 16 additions & 2 deletions paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2747,6 +2747,18 @@ struct SimpleOpTypeSetTeller : public Teller {
#endif
}

if (op_type == "flip") {
if (!with_dynamic_shape) {
VLOG(3) << "the flip does not support "
"static shape yet";
return false;
}
#if !IS_TRT_VERSION_GE(7220)
VLOG(3) << "flip is not supported when TensorRT below 7.2.2";
return false;
#endif
}

if (use_no_calib_int8) {
return int8_teller_set.count(op_type);
} else {
Expand Down Expand Up @@ -2917,7 +2929,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"grid_sampler",
"cumsum",
"unbind",
"assign"};
"assign",
"flip"};

std::unordered_set<std::string> teller_set{
"matrix_multiply",
Expand Down Expand Up @@ -3081,7 +3094,8 @@ struct SimpleOpTypeSetTeller : public Teller {
"grid_sampler",
"cumsum",
"unbind",
"assign"};
"assign",
"flip"};
};

struct GenericPluginTeller : public Teller {
Expand Down
140 changes: 140 additions & 0 deletions test/ir/inference/test_trt_convert_flip.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
from functools import partial
from typing import List

import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest

import paddle.inference as paddle_infer


class TrtConvertFlipTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
ver = paddle_infer.get_trt_compile_version()
if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 7220:
return False
return True

def sample_program_configs(self):
def generate_input(batch):
if self.dims == 4:
return np.random.random([batch, 3, 3, 24]).astype(np.float32)
elif self.dims == 3:
return np.random.random([batch, 3, 24]).astype(np.float32)
elif self.dims == 2:
return np.random.random([batch, 24]).astype(np.float32)
elif self.dims == 1:
return np.random.random([24]).astype(np.int32)

def generate_axis():
return np.arange(self.dims).tolist()

for dims in [2, 3, 4]:
for batch in [3, 6, 9]:
self.dims = dims
axis = generate_axis()
ops_config = [
{
"op_type": "flip",
"op_inputs": {
"X": ["input_data"],
},
"op_outputs": {"Out": ["output_data"]},
"op_attrs": {"axis": axis},
}
]
ops = self.generate_op_config(ops_config)

program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(
data_gen=partial(generate_input, batch)
),
},
outputs=["output_data"],
)

yield program_config

def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dims == 4:
self.dynamic_shape.min_input_shape = {
"input_data": [1, 3 - 1, 3 - 1, 24 - 1]
}
self.dynamic_shape.max_input_shape = {
"input_data": [9, 3 + 1, 3 + 1, 24 + 1]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [1, 3, 3, 24]
}
elif self.dims == 3:
self.dynamic_shape.min_input_shape = {
"input_data": [1, 3 - 1, 24 - 1]
}
self.dynamic_shape.max_input_shape = {
"input_data": [9, 3 + 1, 24 + 1]
}
self.dynamic_shape.opt_input_shape = {"input_data": [1, 3, 24]}
elif self.dims == 2:
self.dynamic_shape.min_input_shape = {"input_data": [1, 24]}
self.dynamic_shape.max_input_shape = {"input_data": [9, 24]}
self.dynamic_shape.opt_input_shape = {"input_data": [1, 24]}
elif self.dims == 1:
self.dynamic_shape.min_input_shape = {"input_data": [24 - 1]}
self.dynamic_shape.max_input_shape = {"input_data": [24 + 1]}
self.dynamic_shape.opt_input_shape = {"input_data": [24]}

def clear_dynamic_shape():
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

def generate_trt_nodes_num(attrs, dynamic_shape):
ver = paddle_infer.get_trt_compile_version()
if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 7220:
return 0, 3
return 1, 2

attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]
self.trt_param.max_batch_size = 9
self.trt_param.workspace_size = 1073741824
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个没必要开这么大吧


# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), generate_trt_nodes_num(
attrs, True
), 1e-3
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个阈值用默认的,没必要放大


def test(self):
self.run_test()


if __name__ == "__main__":
unittest.main()