Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CINN] Refactor op test mul #55135

Merged
merged 2 commits into from
Jul 5, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
220 changes: 192 additions & 28 deletions test/cinn/ops/test_mul_op.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
#!/usr/bin/env python3

# Copyright (c) 2021 CINN Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
Expand All @@ -14,55 +13,220 @@
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import unittest

import cinn
import numpy as np
from cinn.common import *
from cinn.frontend import *
from op_test import OpTest, OpTestTool
from op_test_helper import TestCaseHelper

import paddle
import paddle.nn.functional as F


def infer_shape(
x_shape: list,
y_shape: list,
x_num_col_dim: int,
y_num_col_dim: int,
is_infer: bool,
):
def flatten_shape(shape: list, num_col_dim: int) -> list:
if len(shape) <= 2:
return shape
else:
new_shape = [1, 1]
for i, x in enumerate(shape):
if i < num_col_dim:
new_shape[0] *= x
else:
new_shape[1] *= x
return new_shape

x_new_shape = flatten_shape(x_shape, x_num_col_dim)
y_new_shape = flatten_shape(y_shape, y_num_col_dim)
out_shape = []
for i in range(x_num_col_dim):
out_shape.append(x_shape[i])
if is_infer:
for i in range(y_num_col_dim):
out_shape.append(y_shape[i])
else:
for i in range(y_num_col_dim, len(y_shape)):
out_shape.append(y_shape[i])
return x_new_shape, y_new_shape, out_shape


@OpTestTool.skip_if(
not is_compiled_with_cuda(), "x86 test will be skipped due to timeout."
)
class TestMulOp(OpTest):
def setUp(self):
self.init_case()
self.prepare_inputs()

def init_case(self):
self.inputs = {
"x": np.random.random((16, 64)).astype("float32"),
"y": np.random.random((64, 16)).astype("float32"),
}
def prepare_inputs(self):
self.x_np = self.random(
shape=self.case["x_shape"], dtype=self.case["dtype"]
)
self.y_np = self.random(
shape=self.case["y_shape"], dtype=self.case["dtype"]
)

def build_paddle_program(self, target):
x = paddle.to_tensor(self.inputs["x"], stop_gradient=False)
y = paddle.to_tensor(self.inputs["y"], stop_gradient=False)
out = paddle.matmul(x, y)
x = paddle.to_tensor(self.x_np, stop_gradient=False)
y = paddle.to_tensor(self.y_np, stop_gradient=False)
x_shape, y_shape, out_shape = infer_shape(
x.shape,
y.shape,
self.case["x_num_col_dims"],
self.case["y_num_col_dims"],
self.case["is_infer"],
)
x = paddle.reshape(x, x_shape)
y = paddle.reshape(y, y_shape)
if self.case["is_infer"]:
out = paddle.matmul(x, y, transpose_x=False, transpose_y=True)
else:
out = paddle.matmul(x, y)
out = paddle.reshape(out, out_shape)
self.paddle_outputs = [out]

def build_cinn_program(self, target):
builder = NetBuilder("matmul")

x = builder.create_input(Float(32), self.inputs["x"].shape, "x")
y = builder.create_input(Float(32), self.inputs["y"].shape, "y")

out = builder.matmul(x, y)
builder = NetBuilder("mul")
x = builder.create_input(
self.nptype2cinntype(self.case["dtype"]), self.case["x_shape"], "x"
)
y = builder.create_input(
self.nptype2cinntype(self.case["dtype"]), self.case["y_shape"], "y"
)
out = builder.mul(
x,
y,
x_num_col_dims=self.case["x_num_col_dims"],
y_num_col_dims=self.case["y_num_col_dims"],
is_infer=self.case["is_infer"],
)
prog = builder.build()
forward_res = self.get_cinn_output(
prog, target, [x, y], [self.inputs["x"], self.inputs["y"]], [out]
res = self.get_cinn_output(
prog, target, [x, y], [self.x_np, self.y_np], [out]
)

self.cinn_outputs = forward_res
self.cinn_outputs = res

def test_check_results(self):
self.check_outputs_and_grads()
max_relative_error = (
self.case["max_relative_error"]
if "max_relative_error" in self.case
else 1e-5
)
self.check_outputs_and_grads(max_relative_error=max_relative_error)


class TestMulOpShape(TestCaseHelper):
def init_attrs(self):
self.class_name = "TestMulOpShape"
self.cls = TestMulOp
self.inputs = [
{
"x_shape": [1, 1],
"y_shape": [1, 1],
"x_num_col_dims": 1,
"y_num_col_dims": 1,
},
{
"x_shape": [32, 64],
"y_shape": [64, 32],
"x_num_col_dims": 1,
"y_num_col_dims": 1,
},
{
"x_shape": [2, 3, 4],
"y_shape": [4, 3, 2],
"x_num_col_dims": 1,
"y_num_col_dims": 2,
},
{
"x_shape": [16, 8, 4, 2],
"y_shape": [2, 4, 8, 16],
"x_num_col_dims": 2,
"y_num_col_dims": 2,
},
{
"x_shape": [1, 1, 1, 1],
"y_shape": [1, 1, 1, 1],
"x_num_col_dims": 2,
"y_num_col_dims": 2,
},
]
self.dtypes = [
{
"dtype": "float32",
},
]
self.attrs = [
{
"is_infer": False,
},
]


class TestMulOpDtype(TestCaseHelper):
def init_attrs(self):
self.class_name = "TestMulOpDtype"
self.cls = TestMulOp
self.inputs = [
{
"x_shape": [32, 64],
"y_shape": [64, 32],
"x_num_col_dims": 1,
"y_num_col_dims": 1,
},
]
self.dtypes = [
# cublas bf16 gemm requires GPU compute capability >= 80
# {
# "dtype": "bfloat16",
# "max_relative_error": 1e-3,
# },
{
"dtype": "float16",
"max_relative_error": 1e-2,
},
{
"dtype": "float32",
},
{
"dtype": "float64",
},
]
self.attrs = [
{
"is_infer": False,
},
]


class TestMulOpAttr(TestCaseHelper):
def init_attrs(self):
self.class_name = "TestMulOpAttr"
self.cls = TestMulOp
self.inputs = [
{
"x_shape": [16, 8, 4, 2],
"y_shape": [16, 8, 4, 2],
"x_num_col_dims": 2,
"y_num_col_dims": 2,
},
]
self.dtypes = [
{
"dtype": "float32",
},
]
self.attrs = [
{
"is_infer": True,
},
]


if __name__ == "__main__":
unittest.main()
TestMulOpShape().run()
TestMulOpDtype().run()
TestMulOpAttr().run()