Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PHI] bind nll_loss xpu kernel #54043

Merged
merged 1 commit into from
May 23, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion cmake/external/xpu.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ set(XPU_API_LIB_NAME "libxpuapi.so")
set(XPU_RT_LIB_NAME "libxpurt.so")
set(XPU_XFT_LIB_NAME "libxft.so")

set(XPU_BASE_DATE "20230519")
set(XPU_BASE_DATE "20230523")
set(XPU_XCCL_BASE_VERSION "1.0.49.2")
set(XPU_XFT_BASE_VERSION "latest")

Expand Down
2 changes: 2 additions & 0 deletions paddle/phi/backends/xpu/xpu2_op_list.cc
Original file line number Diff line number Diff line change
Expand Up @@ -525,6 +525,8 @@ XPUOpMap& get_kl2_ops() {
phi::DataType::FLOAT16,
phi::DataType::INT64})},
{"nearest_interp_v2_grad", XPUKernelSet({phi::DataType::FLOAT32})},
{"nll_loss", XPUKernelSet({phi::DataType::FLOAT32})},
{"nll_loss_grad", XPUKernelSet({phi::DataType::FLOAT32})},
{"not_equal",
XPUKernelSet({phi::DataType::INT64,
phi::DataType::INT32,
Expand Down
95 changes: 95 additions & 0 deletions paddle/phi/kernels/xpu/nll_loss_grad_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/nll_loss_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void NllLossGradKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& label,
const paddle::optional<DenseTensor>& weight,
const DenseTensor& total_weight,
const DenseTensor& d_out,
int64_t ignore_index,
const std::string& reduction,
DenseTensor* d_x) {
using XPUType = typename XPUTypeTrait<T>::Type;
const auto& label_type = label.dtype();
bool label_type_match =
label_type == phi::DataType::INT32 || label_type == phi::DataType::INT64;
PADDLE_ENFORCE_EQ(label_type_match,
true,
phi::errors::InvalidArgument(
"Input(Label) holds the wrong type, it holds %s, but "
"desires to be %s or %s",
label_type,
phi::DataType::INT32,
phi::DataType::INT64));

auto d_out_data = d_out.data<XPUType>();
auto d_x_data = dev_ctx.template Alloc<XPUType>(d_x);

auto d_x_dims = d_x->dims();
std::vector<int64_t> d_x_shape = phi::vectorize<int64_t>(d_x_dims);

auto weight_data =
weight.get_ptr() ? weight.get_ptr()->data<float>() : nullptr;

int64_t reduction_id = 0;
if (reduction == "none") {
reduction_id = 0;
} else if (reduction == "mean") {
reduction_id = 1;
} else if (reduction == "sum") {
reduction_id = 2;
}

auto total_weight_data = total_weight.data<XPUType>();

int r;
if (label_type == phi::DataType::INT32) {
const int* label_data = label.data<int>();
r = xpu::nll_loss_grad(dev_ctx.x_context(),
d_out_data,
d_x_data,
d_x_shape,
label_data,
weight_data,
reduction_id,
ignore_index,
total_weight_data);
} else if (label_type == phi::DataType::INT64) {
const int64_t* label_data = label.data<int64_t>();
r = xpu::nll_loss_grad(dev_ctx.x_context(),
d_out_data,
d_x_data,
d_x_shape,
label_data,
weight_data,
reduction_id,
ignore_index,
total_weight_data);
}
PADDLE_ENFORCE_XDNN_SUCCESS(r, "nll_loss_grad");
}

} // namespace phi

// TODO(xiongkun): add the non-raw kernel register here.
PD_REGISTER_KERNEL(
nll_loss_grad, XPU, ALL_LAYOUT, phi::NllLossGradKernel, float) {}
93 changes: 93 additions & 0 deletions paddle/phi/kernels/xpu/nll_loss_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/nll_loss_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void NllLossRawKernel(const Context& dev_ctx,
const DenseTensor& x,
const DenseTensor& label,
const paddle::optional<DenseTensor>& weight,
int64_t ignore_index,
const std::string& reduction,
DenseTensor* out,
DenseTensor* total_weight) {
using XPUType = typename XPUTypeTrait<T>::Type;
const auto& label_type = label.dtype();
bool label_type_match =
label_type == phi::DataType::INT32 || label_type == phi::DataType::INT64;
PADDLE_ENFORCE_EQ(label_type_match,
true,
phi::errors::InvalidArgument(
"Input(Label) holds the wrong type, it holds %s, but "
"desires to be %s or %s",
label_type,
phi::DataType::INT32,
phi::DataType::INT64));

auto x_data = x.data<XPUType>();
auto out_data = dev_ctx.template Alloc<XPUType>(out);

auto weight_data =
weight.get_ptr() ? weight.get_ptr()->data<XPUType>() : nullptr;

auto total_weight_data = dev_ctx.template Alloc<XPUType>(total_weight);

auto x_dims = x.dims();
std::vector<int64_t> x_shape = phi::vectorize<int64_t>(x_dims);

int64_t reduction_id = 0;
if (reduction == "none") {
reduction_id = 0;
} else if (reduction == "mean") {
reduction_id = 1;
} else if (reduction == "sum") {
reduction_id = 2;
}

int r;
if (label_type == phi::DataType::INT32) {
const int* label_data = label.data<int>();
r = xpu::nll_loss(dev_ctx.x_context(),
x_data,
out_data,
total_weight_data,
x_shape,
label_data,
weight_data,
reduction_id,
ignore_index);
} else if (label_type == phi::DataType::INT64) {
const int64_t* label_data = label.data<int64_t>();
r = xpu::nll_loss(dev_ctx.x_context(),
x_data,
out_data,
total_weight_data,
x_shape,
label_data,
weight_data,
reduction_id,
ignore_index);
}
PADDLE_ENFORCE_XDNN_SUCCESS(r, "nll_loss");
}

} // namespace phi

// TODO(xiongkun): add the non-raw kernel register here.
PD_REGISTER_KERNEL(nll_loss, XPU, ALL_LAYOUT, phi::NllLossRawKernel, float) {}
Loading