Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add bfloat16 support for several operators and apis. #52696

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
154 changes: 108 additions & 46 deletions paddle/phi/kernels/gpu/adamw_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
#include "paddle/phi/kernels/funcs/for_range.h"

namespace phi {
template <typename T, typename MT>
template <typename T, typename TG, typename MT>
__global__ void AdamWKernelREG(MT beta1,
MT beta2,
MT epsilon,
Expand All @@ -42,7 +42,7 @@ __global__ void AdamWKernelREG(MT beta1,
const MT* moment2,
MT* moment2_out,
const MT* lr_,
const T* grad,
const TG* grad,
const T* param,
T* param_out,
const MT* master_param,
Expand Down Expand Up @@ -78,7 +78,7 @@ __global__ void AdamWKernelREG(MT beta1,
}
}

template <typename T, typename MT>
template <typename T, typename TG, typename MT>
__global__ void AdamWKernelMEM(MT beta1,
MT beta2,
MT epsilon,
Expand All @@ -91,7 +91,7 @@ __global__ void AdamWKernelMEM(MT beta1,
const MT* moment2,
MT* moment2_out,
const MT* lr_,
const T* grad,
const TG* grad,
const T* param,
T* param_out,
const MT* master_param,
Expand Down Expand Up @@ -167,6 +167,8 @@ void AdamwDenseKernel(const Context& dev_ctx,
DenseTensor* master_param_outs) {
using MPDType = typename phi::dtype::MPTypeTrait<T>::Type;

const auto grad_type = grad.dtype();

VLOG(4) << "use_global_beta_pow:" << use_global_beta_pow;

MPDType coeff_ = static_cast<MPDType>(coeff);
Expand All @@ -191,8 +193,10 @@ void AdamwDenseKernel(const Context& dev_ctx,
phi::Copy(dev_ctx, param, dev_ctx.GetPlace(), false, param_out);
phi::Copy(dev_ctx, moment1, dev_ctx.GetPlace(), false, moment1_out);
phi::Copy(dev_ctx, moment2, dev_ctx.GetPlace(), false, moment2_out);
phi::Copy(dev_ctx, beta1_pow, beta1_pow.place(), false, beta1_pow_out);
phi::Copy(dev_ctx, beta2_pow, beta2_pow.place(), false, beta2_pow_out);
if (!use_global_beta_pow) {
phi::Copy(dev_ctx, beta1_pow, beta1_pow.place(), false, beta1_pow_out);
phi::Copy(dev_ctx, beta2_pow, beta2_pow.place(), false, beta2_pow_out);
}
return;
}

Expand Down Expand Up @@ -233,25 +237,49 @@ void AdamwDenseKernel(const Context& dev_ctx,

if (beta1_pow.place() == CPUPlace() && beta2_pow.place() == CPUPlace()) {
// Compute with betapow in REG
AdamWKernelREG<T, MPDType><<<blocks, threads, 0, dev_ctx.stream()>>>(
beta1_,
beta2_,
epsilon_,
coeff_,
lr_ratio_,
*beta1_pow.data<MPDType>(),
*beta2_pow.data<MPDType>(),
moment1.data<MPDType>(),
dev_ctx.template Alloc<MPDType>(moment1_out),
moment2.data<MPDType>(),
dev_ctx.template Alloc<MPDType>(moment2_out),
learning_rate.data<MPDType>(),
grad.data<T>(),
param.data<T>(),
dev_ctx.template Alloc<T>(param_out),
master_in_data,
master_out_data,
param.numel());
if (grad_type == phi::DataType::FLOAT32)
AdamWKernelREG<T, float, MPDType>
<<<blocks, threads, 0, dev_ctx.stream()>>>(
beta1_,
beta2_,
epsilon_,
coeff_,
lr_ratio_,
*beta1_pow.data<MPDType>(),
*beta2_pow.data<MPDType>(),
moment1.data<MPDType>(),
dev_ctx.template Alloc<MPDType>(moment1_out),
moment2.data<MPDType>(),
dev_ctx.template Alloc<MPDType>(moment2_out),
learning_rate.data<MPDType>(),
grad.data<float>(),
param.data<T>(),
dev_ctx.template Alloc<T>(param_out),
master_in_data,
master_out_data,
param.numel());

else

AdamWKernelREG<T, T, MPDType><<<blocks, threads, 0, dev_ctx.stream()>>>(
beta1_,
beta2_,
epsilon_,
coeff_,
lr_ratio_,
*beta1_pow.data<MPDType>(),
*beta2_pow.data<MPDType>(),
moment1.data<MPDType>(),
dev_ctx.template Alloc<MPDType>(moment1_out),
moment2.data<MPDType>(),
dev_ctx.template Alloc<MPDType>(moment2_out),
learning_rate.data<MPDType>(),
grad.data<T>(),
param.data<T>(),
dev_ctx.template Alloc<T>(param_out),
master_in_data,
master_out_data,
param.numel());
if (!use_global_beta_pow) {
// Cpu update
dev_ctx.template HostAlloc<MPDType>(beta1_pow_out)[0] =
Expand All @@ -260,28 +288,50 @@ void AdamwDenseKernel(const Context& dev_ctx,
beta2_ * beta2_pow.data<MPDType>()[0];
}
} else {
AdamWKernelMEM<T, MPDType><<<blocks, threads, 0, dev_ctx.stream()>>>(
beta1_,
beta2_,
epsilon_,
coeff_,
lr_ratio_,
beta1_pow.data<MPDType>(),
beta2_pow.data<MPDType>(),
moment1.data<MPDType>(),
dev_ctx.template Alloc<MPDType>(moment1_out),
moment2.data<MPDType>(),
dev_ctx.template Alloc<MPDType>(moment2_out),
learning_rate.data<MPDType>(),
grad.data<T>(),
param.data<T>(),
dev_ctx.template Alloc<T>(param_out),
master_in_data,
master_out_data,
param.numel());
if (grad_type == phi::DataType::FLOAT32)
AdamWKernelMEM<T, float, MPDType>
<<<blocks, threads, 0, dev_ctx.stream()>>>(
beta1_,
beta2_,
epsilon_,
coeff_,
lr_ratio_,
beta1_pow.data<MPDType>(),
beta2_pow.data<MPDType>(),
moment1.data<MPDType>(),
dev_ctx.template Alloc<MPDType>(moment1_out),
moment2.data<MPDType>(),
dev_ctx.template Alloc<MPDType>(moment2_out),
learning_rate.data<MPDType>(),
grad.data<float>(),
param.data<T>(),
dev_ctx.template Alloc<T>(param_out),
master_in_data,
master_out_data,
param.numel());
else
AdamWKernelMEM<T, T, MPDType><<<blocks, threads, 0, dev_ctx.stream()>>>(
beta1_,
beta2_,
epsilon_,
coeff_,
lr_ratio_,
beta1_pow.data<MPDType>(),
beta2_pow.data<MPDType>(),
moment1.data<MPDType>(),
dev_ctx.template Alloc<MPDType>(moment1_out),
moment2.data<MPDType>(),
dev_ctx.template Alloc<MPDType>(moment2_out),
learning_rate.data<MPDType>(),
grad.data<T>(),
param.data<T>(),
dev_ctx.template Alloc<T>(param_out),
master_in_data,
master_out_data,
param.numel());
if (!use_global_beta_pow) {
// Update with gpu
UpdateAdamWBetaPow<MPDType><<<1, 32, 0, dev_ctx.stream()>>>(
UpdateAdamWBetaPow<MPDType><<<1, 1, 0, dev_ctx.stream()>>>(
beta1_,
beta2_,
beta1_pow.data<MPDType>(),
Expand All @@ -300,9 +350,21 @@ PD_REGISTER_KERNEL(adamw,
phi::AdamwDenseKernel,
float,
double,
phi::dtype::float16) {
phi::dtype::float16,
phi::dtype::bfloat16) {
// Skip beta1_pow, beta2_pow, skip_update data transform
kernel->InputAt(5).SetBackend(phi::Backend::ALL_BACKEND);
kernel->InputAt(6).SetBackend(phi::Backend::ALL_BACKEND);
kernel->InputAt(8).SetBackend(phi::Backend::ALL_BACKEND);

if (kernel_key.dtype() == phi::DataType::FLOAT16 ||
kernel_key.dtype() == phi::DataType::BFLOAT16) {
kernel->OutputAt(1).SetDataType(phi::DataType::FLOAT32);
kernel->OutputAt(2).SetDataType(phi::DataType::FLOAT32);
kernel->OutputAt(3).SetDataType(phi::DataType::FLOAT32);
kernel->OutputAt(4).SetDataType(phi::DataType::FLOAT32);
kernel->OutputAt(5).SetDataType(phi::DataType::FLOAT32);
}
kernel->OutputAt(3).SetBackend(phi::Backend::UNDEFINED);
kernel->OutputAt(4).SetBackend(phi::Backend::UNDEFINED);
}
6 changes: 4 additions & 2 deletions paddle/phi/kernels/gpu/amp_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -357,14 +357,16 @@ PD_REGISTER_KERNEL(check_finite_and_unscale,
phi::CheckFiniteAndUnscaleKernel,
float,
double,
phi::dtype::float16) {}
phi::dtype::float16,
phi::dtype::bfloat16) {}

PD_REGISTER_KERNEL(update_loss_scaling,
GPU,
ALL_LAYOUT,
phi::UpdateLossScalingKernel,
float,
double,
phi::dtype::float16) {
phi::dtype::float16,
phi::dtype::bfloat16) {
kernel->InputAt(1).SetBackend(phi::Backend::ALL_BACKEND);
}
1 change: 1 addition & 0 deletions paddle/phi/kernels/gpu/matmul_grad_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,7 @@ PD_REGISTER_KERNEL(matmul_with_flatten_grad,
phi::MatmulWithFlattenGradKernel,
float,
double,
phi::dtype::bfloat16,
phi::dtype::float16) {}

PD_REGISTER_KERNEL(matmul_with_flatten_double_grad,
Expand Down
1 change: 1 addition & 0 deletions paddle/phi/kernels/gpu/matmul_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -36,4 +36,5 @@ PD_REGISTER_KERNEL(matmul_with_flatten,
phi::MatmulWithFlattenKernel,
float,
double,
phi::dtype::bfloat16,
phi::dtype::float16) {}
Loading