Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Prim] support amp O1 in prim #52598

Merged
merged 11 commits into from
Apr 9, 2023
2 changes: 2 additions & 0 deletions python/paddle/jit/dy2static/partial_program.py
Original file line number Diff line number Diff line change
Expand Up @@ -287,6 +287,8 @@ def _create_amp_program(self, is_infer_mode=False):
amp_program, self._amp_list
)
if is_infer_mode:
if self._hooker:
amp_program = self._hooker.after_infer(amp_program)
return amp_program
else:
train_amp_program = self._append_backward_desc(amp_program)
Expand Down
3 changes: 1 addition & 2 deletions python/paddle/jit/dy2static/program_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,6 @@
import warnings
import weakref

from paddle.amp.auto_cast import _in_amp_guard
from paddle.fluid import _non_static_mode, core, framework
from paddle.fluid.data_feeder import check_type
from paddle.fluid.dygraph.base import (
Expand Down Expand Up @@ -1228,7 +1227,7 @@ def _build_once(self, cache_key):
partial_program = partial_program_from(
concrete_program, cache_key.class_instance is not None
)
if core._is_fwd_prim_enabled() and not _in_amp_guard():
if core._is_fwd_prim_enabled():
partial_program.set_hooker(
PrimHooker(concrete_program.main_program)
)
Expand Down
104 changes: 104 additions & 0 deletions test/prim/process/test_prim_amp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

import paddle
import paddle.nn.functional as F
from paddle import nn
from paddle.fluid import core, framework
from paddle.nn import BatchNorm

np.random.seed(2023)


class PrimeNet(paddle.nn.Layer):
def __init__(self):
super().__init__()
self.conv = nn.Conv2D(2, 4, (3, 3), bias_attr=False)
self.bn = BatchNorm(4, act="relu")

def forward(self, x):
y = self.conv(x)
out = self.bn(y)
res = F.max_pool2d(out, kernel_size=2, stride=2, padding=0)
return res


class TestPrimAMPO1(unittest.TestCase):
"""
Test PrimeNet with @to_static + prim v.s Dygraph in AMPO1.
"""

def setUp(self):
paddle.seed(2022)
self.x = paddle.randn([4, 2, 6, 6], dtype="float32")
self.x.stop_gradient = False

def train(self, use_prim):
core._set_prim_all_enabled(use_prim)
paddle.seed(2022)
net = PrimeNet()
sgd = paddle.optimizer.SGD(
learning_rate=0.1, parameters=net.parameters()
)

if use_prim:
net = paddle.jit.to_static(net, build_strategy=False)
with paddle.amp.auto_cast(level='O1'):
out = net(self.x)
loss = paddle.mean(out)
loss.backward()
sgd.step()
sgd.clear_grad()
return loss

def test_amp_01(self):
if not isinstance(framework._current_expected_place(), core.CPUPlace):
expected = self.train(False)
actual = self.train(True)
np.testing.assert_allclose(
expected,
actual,
rtol=1e-3,
atol=1e-3,
)

def test_amp_O1_infer(self):
if not isinstance(framework._current_expected_place(), core.CPUPlace):
net = PrimeNet()
core._set_prim_all_enabled(False)
net.eval()
static_net = paddle.jit.to_static(net, build_strategy=False)
res = static_net(self.x)

# set prim all enabled
core._set_prim_all_enabled(True)
net.eval()
static_net = paddle.jit.to_static(net, build_strategy=False)
with paddle.amp.auto_cast(level='O1'):
res_amp = static_net(self.x)

np.testing.assert_allclose(
res,
res_amp,
rtol=1e-3,
atol=1e-3,
)


if __name__ == '__main__':
unittest.main()