Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【Hackathon No57】add_fp16_bf16_for_dot & bf16_for_cross #52426

Merged
merged 6 commits into from
Apr 13, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions paddle/phi/kernels/gpu/cross_grad_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -191,6 +191,7 @@ PD_REGISTER_KERNEL(cross_grad,
ALL_LAYOUT,
phi::CrossGradKernel,
phi::dtype::float16,
phi::dtype::bfloat16,
float,
double,
int,
Expand Down
1 change: 1 addition & 0 deletions paddle/phi/kernels/gpu/cross_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -168,6 +168,7 @@ PD_REGISTER_KERNEL(cross,
ALL_LAYOUT,
phi::CrossKernel,
phi::dtype::float16,
phi::dtype::bfloat16,
float,
double,
int,
Expand Down
6 changes: 5 additions & 1 deletion paddle/phi/kernels/gpu/dot_grad_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,9 @@ limitations under the License. */
#include "paddle/phi/kernels/dot_grad_kernel.h"

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/dot_grad_kernel_impl.h"

Expand All @@ -28,4 +30,6 @@ PD_REGISTER_KERNEL(dot_grad,
int,
int64_t,
phi::dtype::complex<float>,
phi::dtype::complex<double>) {}
phi::dtype::complex<double>,
phi::dtype::float16,
phi::dtype::bfloat16) {}
6 changes: 5 additions & 1 deletion paddle/phi/kernels/gpu/dot_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,8 @@
#include "paddle/phi/kernels/dot_kernel.h"

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"

Expand Down Expand Up @@ -61,4 +63,6 @@ PD_REGISTER_KERNEL(dot,
int,
int64_t,
complex64,
complex128) {}
complex128,
phi::dtype::float16,
phi::dtype::bfloat16) {}
52 changes: 50 additions & 2 deletions python/paddle/fluid/tests/unittests/test_cross_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,11 +15,11 @@
import unittest

import numpy as np
from eager_op_test import OpTest
from eager_op_test import OpTest, convert_float_to_uint16

import paddle
from paddle import fluid
from paddle.fluid import Program, program_guard
from paddle.fluid import Program, core, program_guard


class TestCrossOp(OpTest):
Expand Down Expand Up @@ -65,6 +65,9 @@ def init_output(self):
self.outputs = {'Out': np.array(z_list).reshape(self.shape)}


@unittest.skipIf(
not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
class TestCrossFP16Op(TestCrossOp):
def initTestCase(self):
self.shape = (2048, 3)
Expand All @@ -77,6 +80,51 @@ def init_output(self):
self.outputs = {'Out': np.array(z_list).reshape(self.shape)}


@unittest.skipIf(
not core.is_compiled_with_cuda()
or not core.is_bfloat16_supported(core.CUDAPlace(0)),
"core is not compiled with CUDA and not support the bfloat16",
)
class TestCrossBF16Op(OpTest):
def setUp(self):
self.op_type = "cross"
self.python_api = paddle.cross
self.initTestCase()
self.x = np.random.random(self.shape).astype(np.float32)
self.y = np.random.random(self.shape).astype(np.float32)
self.inputs = {
'X': convert_float_to_uint16(self.x),
'Y': convert_float_to_uint16(self.y),
}
self.init_output()

def initTestCase(self):
self.attrs = {'dim': -2}
self.dtype = np.uint16
self.shape = (1024, 3, 1)

def init_output(self):
x = np.squeeze(self.x, 2)
y = np.squeeze(self.y, 2)
z_list = []
for i in range(1024):
z_list.append(np.cross(x[i], y[i]))
out = np.array(z_list).astype(np.float32).reshape(self.shape)
self.outputs = {'Out': convert_float_to_uint16(out)}

def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_bfloat16_supported(place):
self.check_output_with_place(place)

def test_check_grad_normal(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_bfloat16_supported(place):
self.check_grad_with_place(place, ['X', 'Y'], 'Out')


class TestCrossAPI(unittest.TestCase):
def input_data(self):
self.data_x = np.array(
Expand Down
199 changes: 197 additions & 2 deletions python/paddle/fluid/tests/unittests/test_dot_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
import unittest

import numpy as np
from eager_op_test import OpTest
from eager_op_test import OpTest, convert_float_to_uint16

import paddle
from paddle import fluid
Expand Down Expand Up @@ -85,7 +85,7 @@ def test_check_grad_ingore_y(self):
def init_input_output(self):
self.x = np.random.uniform(0.1, 1, [121]).astype(self.dtype)
self.y = np.random.uniform(1, 3, [121]).astype(self.dtype)
self.out = np.dot(self.x, self.y)
self.out = np.dot(self.x, self.y).astype(self.dtype)

def init_dtype(self):
self.dtype = np.float64
Expand Down Expand Up @@ -314,6 +314,201 @@ def test_check_grad_ingore_y(self):
)


@unittest.skipIf(
not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
class TestDotFP16Op(OpTest):
def setUp(self):
self.op_type = "dot"
self.python_api = paddle.dot
self.init_dtype()
self.init_input_output()

self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
}
self.outputs = {'Out': self.out}
self.attrs = {}

def init_dtype(self):
self.dtype = np.float16

def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=0.125)

def test_check_grad_normal(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_grad_with_place(place, ['X', 'Y'], 'Out')

def test_check_grad_ingore_x(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_grad_with_place(
place, ['Y'], 'Out', no_grad_set=set("X")
)

def test_check_grad_ingore_y(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_grad_with_place(
place, ['X'], 'Out', no_grad_set=set("Y")
)

def init_input_output(self):
self.x = np.random.uniform(0.1, 1, [121]).astype(self.dtype)
self.y = np.random.uniform(1, 3, [121]).astype(self.dtype)
self.out = np.dot(self.x, self.y)


@unittest.skipIf(
not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
class DotFP16OpBatch(TestDotFP16Op):
def init_input_output(self):
self.x = (
np.random.uniform(0.1, 1, [132])
.astype(self.dtype)
.reshape([11, 12])
)
self.y = (
np.random.uniform(1, 3, [132]).astype(self.dtype).reshape([11, 12])
)
self.out = np.sum(self.x * self.y, axis=1).reshape([11, 1])


@unittest.skipIf(
not core.is_compiled_with_cuda()
or not core.is_bfloat16_supported(core.CUDAPlace(0)),
"core is not compiled with CUDA and not support the bfloat16",
)
class TestDotBF16Op(OpTest):
def setUp(self):
self.op_type = "dot"
self.python_api = paddle.dot
self.init_dtype()
self.init_input_output()

self.inputs = {
'X': convert_float_to_uint16(self.x),
'Y': convert_float_to_uint16(self.y),
}
self.outputs = {'Out': convert_float_to_uint16(self.out)}
self.attrs = {}

def init_dtype(self):
self.dtype = np.uint16

def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_bfloat16_supported(place):
self.check_output_with_place(place, atol=0.5)

def test_check_grad_normal(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_bfloat16_supported(place):
self.check_grad_with_place(
place,
['X', 'Y'],
'Out',
user_defined_grads=[self.inputs['Y'], self.inputs['X']],
)

def test_check_grad_ingore_x(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_bfloat16_supported(place):
self.check_grad_with_place(
place,
['Y'],
'Out',
no_grad_set=set("X"),
user_defined_grads=[self.inputs['X']],
)

def test_check_grad_ingore_y(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_bfloat16_supported(place):
self.check_grad_with_place(
place,
['X'],
'Out',
no_grad_set=set("Y"),
user_defined_grads=[self.inputs['Y']],
)

def init_input_output(self):
self.x = np.random.uniform(0.1, 1, [121]).astype(np.float32)
self.y = np.random.uniform(1, 3, [121]).astype(np.float32)
self.out = np.dot(self.x, self.y)


@unittest.skipIf(
not core.is_compiled_with_cuda()
or not core.is_bfloat16_supported(core.CUDAPlace(0)),
"core is not compiled with CUDA and not support the bfloat16",
)
class DotBF16OpBatch(TestDotBF16Op):
def init_input_output(self):
self.x = (
np.random.uniform(0.1, 1, [132])
.astype(np.float32)
.reshape([11, 12])
)
self.y = (
np.random.uniform(1, 3, [132]).astype(np.float32).reshape([11, 12])
)
self.out = np.sum(self.x * self.y, axis=1).reshape([11, 1])

def test_check_grad_normal(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_bfloat16_supported(place):
self.check_grad_with_place(
place,
['X', 'Y'],
'Out',
user_defined_grads=[
self.y / self.y.shape[0],
self.x / self.x.shape[0],
],
)

def test_check_grad_ingore_x(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_bfloat16_supported(place):
self.check_grad_with_place(
place,
['Y'],
'Out',
no_grad_set=set("X"),
user_defined_grads=[self.x / self.x.shape[0]],
)

def test_check_grad_ingore_y(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_bfloat16_supported(place):
self.check_grad_with_place(
place,
['X'],
'Out',
no_grad_set=set("Y"),
user_defined_grads=[self.y / self.y.shape[0]],
)


if __name__ == '__main__':
paddle.enable_static()
unittest.main()