Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Hackathon NO.73] 为 Paddle-TRT 添加 temporal_shift 算子 #51207

Merged
merged 19 commits into from
Mar 14, 2023
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions paddle/fluid/inference/api/analysis_predictor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2544,6 +2544,7 @@ USE_TRT_CONVERTER(grid_sampler)
#endif
#if IS_TRT_VERSION_GE(8200)
USE_TRT_CONVERTER(set_value)
USE_TRT_CONVERTER(temporal_shift);
#endif
#if PADDLE_WITH_CUSPARSELT && IS_TRT_VERSION_GE(8000)
USE_TRT_CONVERTER(sparse_fc)
Expand Down
3 changes: 2 additions & 1 deletion paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,8 @@ list(
elementwiseadd_transpose_op.cc
skip_groupnorm_act_op.cc
preln_groupnorm_act_op.cc
expand_v2_op.cc)
expand_v2_op.cc
temporal_shift_op.cc)

if(${TENSORRT_MAJOR_VERSION} GREATER_EQUAL 7)
list(APPEND CONVERT_FILES emb_eltwise_layernorm.cc
Expand Down
191 changes: 191 additions & 0 deletions paddle/fluid/inference/tensorrt/convert/temporal_shift_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,191 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

改成2023

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

namespace paddle {
namespace framework {
class Scope;

namespace proto {
class OpDesc;
} // namespace proto
} // namespace framework
} // namespace paddle
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里也删掉


namespace paddle {
namespace inference {
namespace tensorrt {

/*
* TemporalShiftOp.
*/
class TemporalShiftOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope,
bool test_mode) override {
VLOG(3) << "convert a fluid transpose op to tensorrt tranpose layer";
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);

const float shift_ratio =
PADDLE_GET_CONST(float, op_desc.GetAttr("shift_ratio"));
const int T = PADDLE_GET_CONST(int, op_desc.GetAttr("seg_num"));

auto input_dims = input->getDimensions();

const int NT = input_dims.d[0];
const int C = input_dims.d[1];
const int H = input_dims.d[2];
const int W = input_dims.d[3];
const int N = NT / T;

// Reshape input to [N,T,C,H,W]
auto reshape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input);
nvinfer1::Dims reshape_dims{5, {N, T, C, H, W}};
reshape_layer->setReshapeDimensions(reshape_dims);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

需考虑data_format为NHWC情况

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

在 op 代码中添加了 Permute 的代码,单测代码已添加 nhwc 输入的情况


// Pad input to [N,T+2,C,H,W]
std::vector<int> pre_pad_v{0, 1, 0, 0, 0};
std::vector<int> post_pad_v{0, 1, 0, 0, 0};
nvinfer1::ITensor* pre_pad = vectorToTensor<int>(pre_pad_v);
nvinfer1::ITensor* post_pad = vectorToTensor<int>(post_pad_v);

int dims = 5;
std::vector<int> zeros_v(dims, 0);
auto const zeros = vectorToTensor<int>(zeros_v);

nvinfer1::ITensor* start{};
nvinfer1::ITensor* size{};

start = TRT_ENGINE_ADD_LAYER(engine_,
ElementWise,
*zeros,
*pre_pad,
nvinfer1::ElementWiseOperation::kSUB)
->getOutput(0);

auto const total_padding =
TRT_ENGINE_ADD_LAYER(engine_,
ElementWise,
*pre_pad,
*post_pad,
nvinfer1::ElementWiseOperation::kSUM)
->getOutput(0);

std::vector<int> input_shape_v(dims, 0);
for (int i = 0; i < dims; i++) {
input_shape_v[i] = input->getDimensions().d[i];
}
auto const input_shape = vectorToTensor<int>(input_shape_v);

size = TRT_ENGINE_ADD_LAYER(engine_,
ElementWise,
*input_shape,
*total_padding,
nvinfer1::ElementWiseOperation::kSUM)
->getOutput(0);
nvinfer1::Dims stride;
stride.nbDims = dims;
std::fill_n(stride.d, dims, 1);
auto const& dummy = stride;
auto* slice_layer =
TRT_ENGINE_ADD_LAYER(engine_,
Slice,
*const_cast<nvinfer1::ITensor*>(input),
dummy,
dummy,
stride);
slice_layer->setInput(1, *start);
slice_layer->setInput(2, *size);
slice_layer->setMode(nvinfer1::SliceMode::kFILL);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Slice这种用法要求TRT 8.2+

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

已添加 TRT 版本控制


// Slice Padded Tensor
int slice_c = int(C * shift_ratio);
int slice_c2 = int(C * shift_ratio * 2);
auto* slice1_layer =
TRT_ENGINE_ADD_LAYER(engine_,
Slice,
*slice_layer->getOutput(0),
nvinfer1::Dims{5, {0, 0, 0, 0, 0}},
nvinfer1::Dims{5, {N, T, slice_c, H, W}},
nvinfer1::Dims{5, {1, 1, 1, 1, 1}});
auto* slice2_layer =
TRT_ENGINE_ADD_LAYER(engine_,
Slice,
*slice_layer->getOutput(0),
nvinfer1::Dims{5, {0, 2, slice_c, 0, 0}},
nvinfer1::Dims{5, {N, T, slice_c, H, W}},
nvinfer1::Dims{5, {1, 1, 1, 1, 1}});
auto* slice3_layer =
TRT_ENGINE_ADD_LAYER(engine_,
Slice,
*slice_layer->getOutput(0),
nvinfer1::Dims{5, {0, 1, slice_c2, 0, 0}},
nvinfer1::Dims{5, {N, T, C - slice_c2, H, W}},
nvinfer1::Dims{5, {1, 1, 1, 1, 1}});

// Concatenate slices along the third dimension (C)
nvinfer1::IConcatenationLayer* concat_layer;
if (!slice_c) {
nvinfer1::ITensor* concat_inputs[2] = {slice2_layer->getOutput(0),
slice3_layer->getOutput(0)};
concat_layer =
TRT_ENGINE_ADD_LAYER(engine_, Concatenation, concat_inputs, 2);
concat_layer->setAxis(2);
} else {
nvinfer1::ITensor* concat_inputs[3] = {slice1_layer->getOutput(0),
slice2_layer->getOutput(0),
slice3_layer->getOutput(0)};
concat_layer =
TRT_ENGINE_ADD_LAYER(engine_, Concatenation, concat_inputs, 3);
concat_layer->setAxis(2);
}

// Reshape output to [N*T,C,H,W]
nvinfer1::Dims output_shape{4, {N * T, C, H, W}};
auto* reshape_layer3 =
TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *concat_layer->getOutput(0));
reshape_layer3->setReshapeDimensions(output_shape);

// Set output
auto output_name = op_desc.Output("Out")[0];
RreplenishLayerAndOutput(
reshape_layer3, "temporal_shift", {output_name}, test_mode);
}

private:
template <typename T>
nvinfer1::ITensor* vectorToTensor(std::vector<T> v) {
int* v_data = const_cast<T*>(static_cast<const T*>(v.data()));

nvinfer1::Weights v_wt{nvinfer1::DataType::kINT32,
static_cast<void*>(v_data),
static_cast<int32_t>(v.size())};

nvinfer1::Dims v_dim;
v_dim.nbDims = 1;
v_dim.d[0] = static_cast<int>(v.size());

return TRT_ENGINE_ADD_LAYER(engine_, Constant, v_dim, v_wt)->getOutput(0);
}
};

} // namespace tensorrt
} // namespace inference
} // namespace paddle

REGISTER_TRT_OP_CONVERTER(temporal_shift, TemporalShiftOpConverter);
9 changes: 9 additions & 0 deletions paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2579,6 +2579,13 @@ struct SimpleOpTypeSetTeller : public Teller {
#endif
}

if (op_type == "temporal_shift") {
#if !IS_TRT_VERSION_GE(8200)
VLOG(3) << "temporal_shift is not supported when TensorRT < 8.5.1";
return false;
#endif
}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

不支持静态shape可以在op teller里面说明

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

在 paddle/fluid/framework/ir/trt_support_nhwc_pass.cc 中设置了保持该算子输入的维度,目前已支持静态shape输入


if (use_no_calib_int8) {
return int8_teller_set.count(op_type);
} else {
Expand Down Expand Up @@ -2739,6 +2746,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"fuse_eleadd_transpose",
"skip_groupnorm_act",
"preln_groupnorm_act",
"temporal_shift",
"grid_sampler"};

std::unordered_set<std::string> teller_set{
Expand Down Expand Up @@ -2892,6 +2900,7 @@ struct SimpleOpTypeSetTeller : public Teller {
"fuse_eleadd_transpose",
"skip_groupnorm_act",
"preln_groupnorm_act",
"temporal_shift"
"grid_sampler"};
};

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
from functools import partial
from typing import List

import numpy as np
from program_config import ProgramConfig, TensorConfig
from trt_layer_auto_scan_test import TrtLayerAutoScanTest

import paddle.inference as paddle_infer


class TrtConvertTemporalShiftTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True

def sample_program_configs(self):
def generate_input1(attrs):
T = attrs[0]["seg_num"]
return np.ones([3 * T, 10, 64, 64]).astype(np.float32)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里改random值

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

已修改


for shift_value in [0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.49]:
for T in range(2, 5):
dics = [{"shift_ratio": shift_value, "seg_num": T}, {}]

ops_config = [
{
"op_type": "temporal_shift",
"op_inputs": {"X": ["input_data"]},
"op_outputs": {"Out": ["output_data"]},
"op_attrs": dics[0],
}
]

ops = self.generate_op_config(ops_config)
for i in range(10):
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={
"input_data": TensorConfig(
data_gen=partial(generate_input1, dics)
),
},
outputs=["output_data"],
)

yield program_config

def sample_predictor_configs(
self, program_config
) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
self.dynamic_shape.min_input_shape = {
"input_data": [6, 10, 64, 64]
}
self.dynamic_shape.max_input_shape = {
"input_data": [20, 10, 64, 64]
}
self.dynamic_shape.opt_input_shape = {
"input_data": [6, 10, 64, 64]
}

def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

attrs = [
program_config.ops[i].attrs for i in range(len(program_config.ops))
]

# # for static_shape
# clear_dynamic_shape()
# self.trt_param.precision = paddle_infer.PrecisionType.Float32
# yield self.create_inference_config(), (1, 3), 1e-5
# self.trt_param.precision = paddle_infer.PrecisionType.Half
# yield self.create_inference_config(), (1, 3), 1e-3
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这部分不应该删除,

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

目前已保留


# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), (0, 3), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), (0, 3), 1e-3

def test(self):
self.run_test()


if __name__ == "__main__":
unittest.main()