Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

"add sequence conv layer" #5117

Merged
merged 10 commits into from
Oct 30, 2017
90 changes: 87 additions & 3 deletions python/paddle/v2/framework/layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

__all__ = [
'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat',
'StaticRNN'
'StaticRNN', 'cast'
]


Expand Down Expand Up @@ -61,6 +61,7 @@ def fc(input,
def embedding(input,
size,
data_type='float32',
is_sparse=False,
param_attr=None,
program=None,
init_program=None):
Expand All @@ -72,7 +73,8 @@ def embedding(input,
type='lookup_table',
inputs={'Ids': input,
'W': w},
outputs={'Out': tmp})
outputs={'Out': tmp},
attrs={'is_sparse': is_sparse})
return tmp


Expand Down Expand Up @@ -161,6 +163,18 @@ def func(**kwargs):
_create_op_func_('dropout')


def cast(x, data_type, program=None):
helper = LayerHelper('cast', **locals())
out = helper.create_tmp_variable(dtype=data_type)
helper.append_op(
type='cast',
inputs={'X': [x]},
outputs={'Out': [out]},
attrs={'in_data_type': x.data_type,
'out_data_type': out.data_type})
return out


def concat(input, axis, program=None, init_program=None):
helper = LayerHelper('concat', **locals())
if not isinstance(input, list) and not isinstance(input, tuple):
Expand Down Expand Up @@ -204,6 +218,47 @@ def square_error_cost(input, label, **kwargs):
return square_out


def conv1d(input,
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe sequence_conv is a better name?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Rename conv1d to sequence_conv after discuss with @Canpio offline, since this function's behavior is different with conv2d, conv3d, fixed.

num_filters,
name=None,
filter_size=3,
act=None,
stride=1,
padding=None,
bias_attr=None,
param_attr=None,
program=None,
init_program=None):
# FIXME(dzh) : want to unify the argument of python layer
# function. So we ignore some unecessary attributes.
# such as, padding_trainable, context_start.

helper = LayerHelper('sequence_conv', **locals())
dtype = helper.input_dtype()

filter_shape = [num_filters, filter_size]
filter = helper.create_parameter(
attr=helper.param_attr, shape=filter_shape, dtype=dtype)
pre_bias = helper.create_tmp_variable(dtype)

input.set_lod(lod)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Where is the lod from?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

removed.

helper.append_op(
type='sequence_conv',
inputs={
'X': input,
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

"X": [input]

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

'Filter': filter,
},
outputs={"Out": pre_bias},
attrs={
'context_stride': stride,
'context_start': 0,
'context_length': filter_size
})

pre_act = helper.append_bias_op(pre_bias)
return helper.append_activation(pre_act)


def conv2d(input,
num_filters,
name=None,
Expand Down Expand Up @@ -256,6 +311,35 @@ def conv2d(input,
return helper.append_activation(pre_act)


def pool1d(input,
pool_size,
pool_type,
pool_stride=1,
pool_padding=0,
global_pooling=False,
program=None,
init_program=None):
# FIXME(dzh) : want to unify the argument of python layer
# function. So we ignore some unecessary attributes

ENUM_POOL_TYPE = ["max", "avg", "sqrt", "last", "first"]
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Initialize ENUM_POOL_TYPE as a set to make the following if pool_type not in ENUM_POOL_TYPE: faster.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

if pool_type not in ENUM_POOL_TYPE:
raise ValueError("Unknown pool_type: '%s'. It can only be %s.",
str(pool_type), " ".join(ENUM_POOL_TYPE))

helper = LayerHelper('sequence_pool', **locals())
dtype = helper.input_dtype()
pool_out = helper.create_tmp_variable(dtype)

helper.append_op(
type="sequence_pool",
inputs={"X": input},
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

'X': [input]

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.

outputs={"Out": pool_out},
attrs={"strategy": pool_type, })
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

remove ,

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done.


return pool_out


def pool2d(input,
pool_size,
pool_type,
Expand All @@ -275,7 +359,7 @@ def pool2d(input,
if isinstance(pool_padding, int):
pool_padding = [pool_padding, pool_padding]

helper = LayerHelper('conv2d', **locals())
helper = LayerHelper('pool2d', **locals())
dtype = helper.input_dtype()
pool_out = helper.create_tmp_variable(dtype)

Expand Down
30 changes: 29 additions & 1 deletion python/paddle/v2/framework/nets.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,11 @@
import paddle.v2.framework.layers as layers

__all__ = ["simple_img_conv_pool", "sequence_conv_pool"]


def simple_img_conv_pool(input,
filter_size,
num_filters,
filter_size,
pool_size,
pool_stride,
act,
Expand All @@ -25,3 +27,29 @@ def simple_img_conv_pool(input,
program=program,
init_program=init_program)
return pool_out


def sequence_conv_pool(input,
num_filters,
filter_size,
pool_size,
pool_stride,
act,
program=None,
init_program=None):
conv_out = layers.conv1d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
act=act,
program=program,
init_program=init_program)

pool_out = layers.pool1d(
input=conv_out,
pool_size=pool_size,
pool_type='max',
pool_stride=pool_stride,
program=program,
init_program=init_program)
return pool_out